A321731 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections of the same sizes as the parts of the original partition.
1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 5, 0, 0, 0, 1, 0, 10, 0, 3, 0, 0, 0, 9, 0, 0, 8, 0, 0, 12, 0, 1, 0, 0, 0, 34, 0, 0, 0, 10, 0, 0, 0, 0, 24, 0, 0, 14, 0, 0, 0, 0, 0, 68, 0, 4, 0, 0, 0, 78, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 86, 0, 0, 36, 0, 0, 0, 0, 22, 60, 0, 0
Offset: 1
Keywords
Examples
The a(30) = 12 partitions of the Young diagram of (321) into vertical sections of sizes (321), shown as colorings by positive integers: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 3 2 1 3 1 1 2 1 3 1 1 1 1 2 3 . 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 1 3 1 2 3 3 2 2 3 3 2 2 3 2 2 3 3
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; ptnpos[y_]:=Position[Table[1,{#}]&/@y,1]; ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&]; Table[With[{y=Reverse[primeMS[n]]},Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]]],{n,30}]
Comments