cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321731 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 5, 0, 0, 0, 1, 0, 10, 0, 3, 0, 0, 0, 9, 0, 0, 8, 0, 0, 12, 0, 1, 0, 0, 0, 34, 0, 0, 0, 10, 0, 0, 0, 0, 24, 0, 0, 14, 0, 0, 0, 0, 0, 68, 0, 4, 0, 0, 0, 78, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 86, 0, 0, 36, 0, 0, 0, 0, 22, 60, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(30) = 12 partitions of the Young diagram of (321) into vertical sections of sizes (321), shown as colorings by positive integers:
  1 2 3   1 2 3   1 2 3   1 2 3   1 2 3   1 2 3
  1 2     1 3     2 1     3 1     1 2     1 3
  1       1       1       1       2       3
.
  1 2 3   1 2 3   1 2 3   1 2 3   1 2 3   1 2 3
  2 1     3 1     2 3     3 2     2 3     3 2
  2       3       2       2       3       3
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[With[{y=Reverse[primeMS[n]]},Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]]],{n,30}]