A321732
Number of nonnegative integer square matrices with sum of entries equal to n, no zero rows or columns, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 3, 11, 53, 317, 2293, 19435, 188851, 2068417, 25203807, 338117445, 4951449055, 78589443061, 1343810727205, 24626270763109, 481489261372381, 10004230113283129, 220125503239710879, 5113204953106107087, 125037079246130168973
Offset: 0
The a(3) = 11 matrices:
[3]
.
[2 0] [1 1] [1 0] [0 1]
[0 1] [1 0] [0 2] [1 1]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Cf.
A000700,
A000701,
A006052,
A007016,
A120732,
A319056,
A320451,
A321718,
A321719,
A321722,
A321733,
A321734,
A321735,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321735
Number of (0,1)-matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 2, 7, 30, 153, 939, 6653, 53743, 486576
Offset: 0
The a(3) = 7 matrices:
[1 1]
[1 0]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Cf.
A000700,
A007016,
A049311,
A054976,
A057151,
A104602,
A320451,
A321719,
A321723,
A321732,
A321733,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321739
Number of non-isomorphic weight-n set multipartitions (multisets of sets) whose part-sizes are also their vertex-degrees.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 12, 21, 46, 94, 208
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(6) = 12 set multipartitions:
{1} {1}{2} {2}{12} {12}{12} {1}{23}{23} {12}{13}{23}
{1}{2}{3} {1}{1}{23} {2}{13}{23} {3}{23}{123}
{1}{3}{23} {3}{3}{123} {1}{1}{1}{234}
{1}{2}{3}{4} {1}{2}{2}{34} {1}{1}{24}{34}
{1}{2}{4}{34} {1}{2}{34}{34}
{1}{2}{3}{4}{5} {1}{3}{24}{34}
{1}{4}{4}{234}
{2}{4}{12}{34}
{3}{4}{12}{34}
{1}{2}{3}{3}{45}
{1}{2}{3}{5}{45}
{1}{2}{3}{4}{5}{6}
Cf.
A000700,
A049311,
A057151,
A104602,
A319056,
A320451,
A321719,
A321721,
A321723,
A321732,
A321734,
A321735,
A321736,
A321854.
A321733
Number of (0,1)-matrices with n ones, no zero rows or columns, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 2, 8, 40, 246, 1816, 15630, 153592, 1696760, 20816358, 280807868, 4131117440, 65823490088, 1129256780408
Offset: 0
The a(4) = 40 matrices:
[1 1]
[1 1]
.
[1 1 0][1 1 0][1 0 1][1 0 1][1 0 0]
[1 0 0][0 0 1][1 0 0][0 1 0][0 1 1]
[0 0 1][1 0 0][0 1 0][1 0 0][0 1 0]
.
[1 0 0][0 1 1][0 1 0][0 1 0][0 1 0]
[0 0 1][1 0 0][1 1 0][1 0 1][0 1 1]
[0 1 1][1 0 0][0 0 1][0 1 0][1 0 0]
.
[0 1 0][0 0 1][0 0 1][0 0 1][0 0 1]
[0 0 1][1 1 0][1 0 0][0 1 0][0 0 1]
[1 0 1][0 1 0][0 1 1][1 0 1][1 1 0]
.
[1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0]
[0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][0 1 0 0][0 0 0 1][0 1 0 0][0 0 1 0]
[0 0 0 1][0 0 1 0][0 0 0 1][0 1 0 0][0 0 1 0][0 1 0 0]
.
[0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0]
[1 0 0 0][1 0 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 0 1 0]
[0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 0 1 0][1 0 0 0]
.
[0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0]
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 0 1][0 0 0 1]
[0 1 0 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0]
[0 0 0 1][0 1 0 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0]
.
[0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1]
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0]
[0 1 0 0][0 0 1 0][1 0 0 0][0 0 1 0][1 0 0 0][0 1 0 0]
[0 0 1 0][0 1 0 0][0 0 1 0][1 0 0 0][0 1 0 0][1 0 0 0]
Cf.
A006052,
A007016,
A049311,
A054976,
A057151,
A104602,
A120732,
A319056,
A321717,
A321723,
A321732,
A321735,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321734
Number of nonnegative integer square matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 3, 9, 37, 177, 1054, 7237, 57447, 512664, 5101453, 55870885, 668438484, 8667987140, 121123281293, 1814038728900, 28988885491655, 492308367375189, 8854101716492463, 168108959387012804, 3360171602215686668, 70527588239926854144, 1550926052235372201700
Offset: 0
The a(3) = 9 matrices:
[3]
.
[2 0] [1 1]
[0 1] [1 0]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Cf.
A000700,
A006052,
A007016,
A007716,
A120732,
A319056,
A319616,
A320451,
A321719,
A321722,
A321732,
A321735,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
Showing 1-5 of 5 results.
Comments