A321743 Sum of coefficients of monomial symmetric functions in the elementary symmetric function of the integer partition with Heinz number n.
1, 1, 1, 3, 1, 4, 1, 10, 9, 5, 1, 20, 1, 6, 14, 47, 1, 50, 1, 30, 20, 7, 1, 110, 29, 8, 157, 42, 1, 97, 1, 246, 27, 9, 49, 338, 1, 10, 35, 206, 1, 159, 1, 56, 353, 11, 1, 732, 99, 224, 44, 72, 1, 1184, 76, 332, 54, 12, 1, 743, 1, 13, 677, 1602, 111, 242, 1, 90
Offset: 1
Keywords
Examples
The sum of coefficients of e(211) = 2m(22) + m(31) + 5m(211) + 12m(1111) is a(12) = 20. The a(2) = 1 through a(9) = 9 size-preserving permutations of set multipartitions: {1} {1}{1} {12} {1}{1}{1} {1}{12} {1}{1}{1}{1} {123} {12}{12} {1}{2} {1}{1}{2} {1}{23} {1}{2}{12} {2}{1} {1}{2}{1} {2}{13} {2}{1}{12} {2}{1}{1} {3}{12} {1}{1}{2}{2} {1}{2}{3} {1}{2}{1}{2} {1}{3}{2} {1}{2}{2}{1} {2}{1}{3} {2}{1}{1}{2} {2}{3}{1} {2}{1}{2}{1} {3}{1}{2} {2}{2}{1}{1} {3}{2}{1}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],And@@UnsameQ@@@#&]}],{n,30}]
Comments