A321745 Sum of coefficients of monomial symmetric functions in the homogeneous symmetric function of the integer partition with Heinz number n.
1, 1, 2, 3, 3, 6, 5, 10, 16, 12, 7, 27, 11, 20, 32, 47, 15, 76, 22, 56, 65, 35, 30, 136, 79, 54, 263, 114, 42, 191, 56, 246, 113, 86, 160, 476, 77, 128, 199, 344
Offset: 1
Examples
The sum of coefficients of h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111) is a(12) = 27. The a(3) = 2 through a(9) = 16 size-preserving permutations of multiset partitions: {11} {12} {111} {112} {1111} {123} {1122} {1}{1} {1}{2} {1}{11} {1}{12} {1}{111} {1}{23} {1}{122} {2}{1} {1}{1}{1} {2}{11} {11}{11} {2}{13} {11}{22} {1}{1}{2} {1}{1}{11} {3}{12} {12}{12} {1}{2}{1} {1}{1}{1}{1} {1}{2}{3} {2}{112} {2}{1}{1} {1}{3}{2} {22}{11} {2}{1}{3} {1}{1}{22} {2}{3}{1} {1}{2}{12} {3}{1}{2} {2}{1}{12} {3}{2}{1} {2}{2}{11} {1}{1}{2}{2} {1}{2}{1}{2} {1}{2}{2}{1} {2}{1}{1}{2} {2}{1}{2}{1} {2}{2}{1}{1}
Links
- Wikipedia, Symmetric polynomial
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,mps[nrmptn[n]]}],{n,30}]
Comments