A321747 Sum of coefficients of elementary symmetric functions in the monomial symmetric function of the integer partition with Heinz number n.
1, 1, -1, 1, 1, -2, -1, 1, 1, 2, 1, -3, -1, -2, -2, 1, 1, 3, -1, 3, 2, 2, 1, -4, 1, -2, -1, -3, -1, -6, 1, 1, -2, 2, -2, 6, -1, -2, 2, 4, 1, 6, -1, 3, 3, 2, 1, -5, 1, 3, -2, -3, -1, -4, 2, -4, 2, -2, 1, -12, -1, 2, -3, 1, -2, -6, 1, 3, -2, -6, -1, 10, 1, -2
Offset: 1
Keywords
Examples
The sum of coefficients of m(2211) = 9e(6) + e(42) - 4e(51) is a(36) = 6.
Links
- Wikipedia, Symmetric polynomial
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[(-1)^(Total[primeMS[n]]-PrimeOmega[n])*Length[Permutations[primeMS[n]]],{n,50}]
Comments