cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321747 Sum of coefficients of elementary symmetric functions in the monomial symmetric function of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, -1, 1, 1, -2, -1, 1, 1, 2, 1, -3, -1, -2, -2, 1, 1, 3, -1, 3, 2, 2, 1, -4, 1, -2, -1, -3, -1, -6, 1, 1, -2, 2, -2, 6, -1, -2, 2, 4, 1, 6, -1, 3, 3, 2, 1, -5, 1, 3, -2, -3, -1, -4, 2, -4, 2, -2, 1, -12, -1, 2, -3, 1, -2, -6, 1, 3, -2, -6, -1, 10, 1, -2
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sum of coefficients of m(2211) = 9e(6) + e(42) - 4e(51) is a(36) = 6.
		

Crossrefs

Row sums of A321746. An unsigned version is A008480.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[(-1)^(Total[primeMS[n]]-PrimeOmega[n])*Length[Permutations[primeMS[n]]],{n,50}]

Formula

a(n) = (-1)^(A056239(n) - A001222(n)) * A008480(n).