A321915 Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
1, 2, -1, -1, 1, 3, -3, 1, -3, 5, -2, 1, -2, 1, 4, -2, -4, 4, -1, -2, 3, 2, -4, 1, -4, 2, 7, -7, 2, 4, -4, -7, 10, -3, -1, 1, 2, -3, 1, 5, -5, -5, 5, 5, -5, 1, -5, 9, 5, -7, -9, 9, -2, -5, 5, 11, -11, -8, 10, -2, 5, -7, -11, 14, 10, -14, 3, 5, -9, -8, 10, 12
Offset: 1
Examples
Tetrangle begins: (1): 1 . (2): 2 -1 (11): -1 1 . (3): 3 -3 1 (21): -3 5 -2 (111): 1 -2 1 . (4): 4 -2 -4 4 -1 (22): -2 3 2 -4 1 (31): -4 2 7 -7 2 (211): 4 -4 -7 10 -3 (1111): -1 1 2 -3 1 . (5): 5 -5 -5 5 5 -5 1 (41): -5 9 5 -7 -9 9 -2 (32): -5 5 11 11 -8 10 -2 (221): 5 -7 11 14 10 14 3 (311): 5 -9 -8 10 12 13 3 (2111): -5 9 10 14 13 17 -4 (11111): 1 -2 -2 3 3 -4 1 For example, row 14 gives: m(32) = -5h(5) + 11h(32) + 5h(41) - 11h(221) - 8h(311) + 10h(2111) - 2h(11111).
Links
- Wikipedia, Symmetric polynomial
Comments