cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321777 Number of compositions of n into parts with distinct multiplicities and with exactly seven parts.

Original entry on oeis.org

1, 7, 28, 42, 168, 238, 280, 428, 595, 595, 826, 910, 1078, 1232, 1716, 1498, 2023, 2093, 2450, 2450, 2996, 3228, 3626, 3710, 4193, 4263, 4998, 4928, 5916, 5838, 6426, 6510, 7371, 7455, 8316, 8464, 9198, 9268, 10318, 10248, 11319, 11473, 12524, 12460, 13636
Offset: 7

Views

Author

Alois P. Heinz, Nov 18 2018

Keywords

Crossrefs

Column k=7 of A242887.

Formula

Conjectures from Colin Barker, Dec 11 2018: (Start)
G.f.: x^7*(1 + 8*x + 36*x^2 + 78*x^3 + 245*x^4 + 475*x^5 + 719*x^6 + 1069*x^7 + 1419*x^8 + 1539*x^9 + 1645*x^10 + 1478*x^11 + 1100*x^12 + 708*x^13 + 505*x^14) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = -a(n-1) - a(n-2) - a(n-3) + a(n-5) + 2*a(n-6) + 3*a(n-7) + 3*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) - 2*a(n-12) - 3*a(n-13) - 3*a(n-14) - 2*a(n-15) - a(n-16) + a(n-18) + a(n-19) + a(n-20) + a(n-21) for n>27.
(End)