A321777 Number of compositions of n into parts with distinct multiplicities and with exactly seven parts.
1, 7, 28, 42, 168, 238, 280, 428, 595, 595, 826, 910, 1078, 1232, 1716, 1498, 2023, 2093, 2450, 2450, 2996, 3228, 3626, 3710, 4193, 4263, 4998, 4928, 5916, 5838, 6426, 6510, 7371, 7455, 8316, 8464, 9198, 9268, 10318, 10248, 11319, 11473, 12524, 12460, 13636
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..1000
Crossrefs
Column k=7 of A242887.
Formula
Conjectures from Colin Barker, Dec 11 2018: (Start)
G.f.: x^7*(1 + 8*x + 36*x^2 + 78*x^3 + 245*x^4 + 475*x^5 + 719*x^6 + 1069*x^7 + 1419*x^8 + 1539*x^9 + 1645*x^10 + 1478*x^11 + 1100*x^12 + 708*x^13 + 505*x^14) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = -a(n-1) - a(n-2) - a(n-3) + a(n-5) + 2*a(n-6) + 3*a(n-7) + 3*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) - 2*a(n-12) - 3*a(n-13) - 3*a(n-14) - 2*a(n-15) - a(n-16) + a(n-18) + a(n-19) + a(n-20) + a(n-21) for n>27.
(End)