A321790 a(n) is the smallest base a > 2 such that a^(k-1) != 1 (mod k), where k = A001567(n), the n-th Fermat pseudoprime to base 2.
3, 3, 3, 5, 3, 7, 3, 3, 5, 5, 7, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 7, 3, 5, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 5, 3, 3, 3, 3, 13, 3, 3, 3, 3, 5, 3, 3, 3, 3, 7, 3, 3, 13, 5, 3, 7, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 11, 3, 5, 5, 3, 3, 3, 5, 5, 3, 5, 7, 5, 5, 3, 13, 3, 3
Offset: 1
Keywords
Examples
The first Fermat pseudoprime to base 2 is 341, and 341 is not a Fermat pseudoprime to base 3, so a(1) = 3.
Crossrefs
Programs
-
Mathematica
a[p_] := Module[{m=3}, While[Mod[m^(p-1), p] == 1, m++]; m]; psp = Select[Range[3, 1000000, 2], CompositeQ[ # ] && PowerMod[2, (# - 1), # ] == 1 &]; Map[a, psp] (* Amiram Eldar, Nov 19 2018 *)
Extensions
More terms from Amiram Eldar, Nov 19 2018
Comments