A321808 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^11.
1, -2049, 177148, -4192257, 48828126, -362976252, 1977326744, -8585738241, 31381236757, -100048830174, 285311670612, -742649943036, 1792160394038, -4051542498456, 8649804864648, -17583591913473, 34271896307634, -64300154115093
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher.
Programs
-
Mathematica
a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^11 &]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
-
PARI
apply( A321808(n)=sumdiv(n, d, (-1)^(n\d-d)*d^11), [1..30]) \\ M. F. Hasler, Nov 26 2018
Formula
G.f.: Sum_{k>=1} (-1)^(k+1)*k^11*x^k/(1 + x^k). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = -3*(341*2^(11*e+1) + 1365)/2047, and a(p^e) = (p^(11*e+11) - 1)/(p^11 - 1) for p > 2. - Amiram Eldar, Nov 22 2022