cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321810 Sum of 6th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 730, 1, 15626, 730, 117650, 1, 532171, 15626, 1771562, 730, 4826810, 117650, 11406980, 1, 24137570, 532171, 47045882, 15626, 85884500, 1771562, 148035890, 730, 244156251, 4826810, 387952660, 117650, 594823322, 11406980, 887503682
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=6 of A285425.
Cf. A050999, A051000, A051001, A051002, A321811 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(6*e + 6) - 1)/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2022 *)
  • PARI
    apply( A321810(n)=sigma(n>>valuation(n,2),6), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321810(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),6)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013954(A000265(n)) = sigma_6(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^6*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(6*e+6)-1)/(p^6-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(7)/14 = 0.0720249... . (End)
a(n) + a(n/2)*2^6 = A013954(n) where a(.)=0 for non-integer arguments. - R. J. Mathar, Aug 15 2023