A321810 Sum of 6th powers of odd divisors of n.
1, 1, 730, 1, 15626, 730, 117650, 1, 532171, 15626, 1771562, 730, 4826810, 117650, 11406980, 1, 24137570, 532171, 47045882, 15626, 85884500, 1771562, 148035890, 730, 244156251, 4826810, 387952660, 117650, 594823322, 11406980, 887503682
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Eric Weisstein's World of Mathematics, Odd Divisor Function.
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Mathematica
f[2, e_] := 1; f[p_, e_] := (p^(6*e + 6) - 1)/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2022 *)
-
PARI
apply( A321810(n)=sigma(n>>valuation(n,2),6), [1..30]) \\ M. F. Hasler, Nov 26 2018
-
Python
from sympy import divisor_sigma def A321810(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),6)) # Chai Wah Wu, Jul 16 2022
Formula
a(n) = A013954(A000265(n)) = sigma_6(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^6*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(6*e+6)-1)/(p^6-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(7)/14 = 0.0720249... . (End)
a(n) + a(n/2)*2^6 = A013954(n) where a(.)=0 for non-integer arguments. - R. J. Mathar, Aug 15 2023