cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321817 a(n) = Sum_{d|n, n/d odd} d^6 for n > 0.

Original entry on oeis.org

1, 64, 730, 4096, 15626, 46720, 117650, 262144, 532171, 1000064, 1771562, 2990080, 4826810, 7529600, 11406980, 16777216, 24137570, 34058944, 47045882, 64004096, 85884500, 113379968, 148035890, 191365120, 244156251, 308915840, 387952660
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013665.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^6 &, OddQ[n/#] &]; Array[a, 30] (* Amiram Eldar, Nov 02 2022 *)
  • PARI
    apply( A321817(n)=sumdiv(n,d,if(bittest(n\d,0),d^6)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(6*e) and a(p^e) = (p^(6*e+6)-1)/(p^6-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = 127*zeta(7)/896 = 0.142924... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-6)*(1-1/2^s). - Amiram Eldar, Jan 08 2023