cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321832 a(n) = Sum_{d|n, n/d==1 (mod 4)} d^8 - Sum_{d|n, n/d==3 (mod 4)} d^8.

Original entry on oeis.org

1, 256, 6560, 65536, 390626, 1679360, 5764800, 16777216, 43040161, 100000256, 214358880, 429916160, 815730722, 1475788800, 2562506560, 4294967296, 6975757442, 11018281216, 16983563040, 25600065536, 37817088000, 54875873280, 78310985280, 110058536960, 152588281251, 208827064832
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, this sequence, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^8 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(8*e+8) - s[p]^(e+1))/(p^8 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321832(n)=factorback(apply(f->f[1]^(8*f[2]+8)\/(f[1]^8+f[1]%4-2),Col(factor(n)))), [1..50]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^8*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(8e+8)/(p^8 + (p mod 4) - 2)). (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^9 / 9, where c = 277*Pi^9/8257536 (A258816). - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^8*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024