A321834 a(n) = Sum_{d|n, n/d==1 mod 4} d^10 - Sum_{d|n, n/d==3 mod 4} d^10.
1, 1024, 59048, 1048576, 9765626, 60465152, 282475248, 1073741824, 3486725353, 10000001024, 25937424600, 61916315648, 137858491850, 289254653952, 576640684048, 1099511627776, 2015993900450, 3570406761472, 6131066257800, 10240001048576
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher.
Crossrefs
Programs
-
Mathematica
s[n_,r_] := DivisorSum[n, #^10 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *) s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *) f[p_, e_] := (p^(10*e+10) - s[p]^(e+1))/(p^10 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
-
PARI
apply( a(n)=sumdiv(n, d, if(bittest(n\d,0),(2-n\d%4)*d^10)), [1..30]) \\ M. F. Hasler, Nov 26 2018
Formula
G.f.: Sum_{k>=1} k^10*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Amiram Eldar, Nov 04 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^11 / 11, where c = beta(11) = 50521*Pi^11/14863564800 = 0.999994374973... and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^10*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024