cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A257783 Number T(n,k) of words w of length n such that each letter of the k-ary alphabet is used at least once and for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 7, 12, 24, 0, 1, 12, 35, 60, 120, 0, 1, 25, 87, 210, 360, 720, 0, 1, 44, 232, 609, 1470, 2520, 5040, 0, 1, 89, 599, 1961, 4872, 11760, 20160, 40320, 0, 1, 160, 1591, 5952, 17649, 43848, 105840, 181440, 362880, 0, 1, 321, 4202, 19255, 60465, 176490, 438480, 1058400, 1814400, 3628800
Offset: 0

Views

Author

Alois P. Heinz, May 08 2015

Keywords

Comments

Row n is the inverse binomial transform of the n-th row of array A213276.

Examples

			T(5,2) = 12: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, baaaa, baaab, baaba.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,  2;
  0, 1,  3,   6;
  0, 1,  7,  12,   24;
  0, 1, 12,  35,   60,  120;
  0, 1, 25,  87,  210,  360,   720;
  0, 1, 44, 232,  609, 1470,  2520,  5040;
  0, 1, 89, 599, 1961, 4872, 11760, 20160, 40320;
		

Crossrefs

Main diagonal gives A000142.
T(n+1,n) = A001710(n+1) (for n>0).
Cf. A213276.

Programs

  • Mathematica
    g[l_, i_] := Module[{j}, If[l[[i]] < 1, Return[False], If[l[[i]] > 1, For[j = i + 1, j <= Length[l], j++, If[l[[i]] <= l[[j]], Return[False], If[l[[j]] > 0, Break[]]]]]]; True];
    b[l_] := b[l] = If[Complement[l, {0}] == {}, 1, Sum[If[g[l, i], b[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, Length[l]}]];
    h[n_, k_, m_, l_] := h[n, k, m, l] = If[n == 0 && k === 0, b[l], If[k == 0 || n > 0 && n < m, 0, Sum[h[n - j, k - 1, Max[m, j], Join[{j}, l]], {j, Max[1, m], n}] + h[n, k - 1, m, Join[{0}, l]]]];
    A[n_, k_] := h[n, k, 0, {}];
    T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*A[n, k - i], {i, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz in A213276 *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A213276(n,k-i).
Showing 1-1 of 1 results.