A321839 Number of words w of length n such that each letter of the ternary alphabet is used at least once and for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
6, 12, 35, 87, 232, 599, 1591, 4202, 11262, 30221, 81834, 222321, 607871, 1668296, 4601369, 12737394, 35401272, 98716505, 276192166, 774988564, 2180739865, 6151939960, 17396648770, 49303165809, 140018238988, 398407130710, 1135670120668, 3242697225865
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..2102
- Vaclav Kotesovec, Recurrence (of order 7)
Crossrefs
Column k=3 of A257783.
Formula
a(n) ~ 797 * 3^(n - 3/2) / (32 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 21 2018