cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321879 Partial sums of the Jordan function J_2(k), for 1 <= k <= n.

Original entry on oeis.org

0, 1, 4, 12, 24, 48, 72, 120, 168, 240, 312, 432, 528, 696, 840, 1032, 1224, 1512, 1728, 2088, 2376, 2760, 3120, 3648, 4032, 4632, 5136, 5784, 6360, 7200, 7776, 8736, 9504, 10464, 11328, 12480, 13344, 14712, 15792, 17136, 18288, 19968, 21120, 22968, 24408
Offset: 0

Views

Author

Daniel Suteu, Nov 20 2018

Keywords

Comments

In general, for m >= 1, Sum_{k=1..n} J_m(k) = Sum_{k=1..n} mu(k) * (Bernoulli(m+1, 1+floor(n/k)) - Bernoulli(m+1, 0)) / (m+1), where mu(k) is the Moebius function and Bernoulli(n,x) are the Bernoulli polynomials.
In general, for m >= 1, Sum_{k=1..n} J_m(k) ~ n^(m+1) / ((m+1) * zeta(m+1)).
In general, for m >= 1, Sum_{k=1..n} J_m(k) = Sum_{k=1..n} k^m*A002321(floor(n/k)). - Ridouane Oudra, Jul 03 2025

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[MoebiusMu[k]*BernoulliB[3,1+Floor[n/k]]/3, {k,1,n}]; Array[a, 50, 0] (* Stefano Spezia, Nov 21 2018 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k) * ((n\k)^3/3 + (n\k)^2/2 + (n\k)/6));

Formula

a(n) ~ n^3 / (3*zeta(3)).
a(n) = Sum_{k=1..n} A007434(k).
a(n) = Sum_{k=1..n} mu(k) * Bernoulli(3, 1+floor(n/k)) / 3, where mu(k) is the Moebius function and Bernoulli(n,x) are the Bernoulli polynomials.
a(n) = Sum_{k=1..n} k^2*A002321(floor(n/k)). - Ridouane Oudra, Jul 03 2025