cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321884 Number A(n,k) of partitions of n into colored blocks of equal parts with colors from a set of size k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 6, 8, 5, 0, 1, 5, 8, 15, 14, 7, 0, 1, 6, 10, 24, 27, 24, 11, 0, 1, 7, 12, 35, 44, 51, 40, 15, 0, 1, 8, 14, 48, 65, 88, 93, 64, 22, 0, 1, 9, 16, 63, 90, 135, 176, 159, 100, 30, 0, 1, 10, 18, 80, 119, 192, 295, 312, 264, 154, 42, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2019

Keywords

Examples

			A(3,2) = 8: 3a, 3b, 2a1a, 2a1b, 2b1a, 2b1b, 111a, 111b.
Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,    1,    1,    1, ...
  0,  1,   2,   3,   4,   5,    6,    7,    8, ...
  0,  2,   4,   6,   8,  10,   12,   14,   16, ...
  0,  3,   8,  15,  24,  35,   48,   63,   80, ...
  0,  5,  14,  27,  44,  65,   90,  119,  152, ...
  0,  7,  24,  51,  88, 135,  192,  259,  336, ...
  0, 11,  40,  93, 176, 295,  456,  665,  928, ...
  0, 15,  64, 159, 312, 535,  840, 1239, 1744, ...
  0, 22, 100, 264, 544, 970, 1572, 2380, 3424, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000041, A015128, A264686, A266821.
Main diagonal gives A321880.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} (1+(k-1)*x^j)/(1-x^j).
A(n,k) = Sum_{i=0..floor((sqrt(1+8*k)-1)/2)} k!/(k-i)! * A321878(n,i).

A325916 Number of partitions of n into colored blocks of equal parts with colors from a set of size n such that the block with largest parts has the first color.

Original entry on oeis.org

1, 1, 2, 5, 11, 27, 76, 177, 428, 966, 2724, 5986, 14322, 31241, 68632, 174364, 374901, 841417, 1792950, 3803764, 7688426, 18376432, 37158444, 80078021, 163155272, 335521478, 658661436, 1298215354, 2820956914, 5523327097, 11240000648, 22117134452, 43666070406
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2019

Keywords

Examples

			a(3) = 5: 3a, 2a1a, 2a1b, 2a1c, 111a.
		

Crossrefs

Cf. A321880.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add(
          (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k)))
        end:
    a:= n-> `if`(n=0, 1, b(n$3)/n):
    seq(a(n), n=0..34);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, k Sum[With[{t = n - i j},  b[t, Min[t, i - 1], k]], {j, 1, n/i}] + b[n, i - 1, k]]];
    a[n_] := If[n == 0, 1, b[n, n, n]/n];
    a /@ Range[0, 34] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)

Formula

a(n) = 1/n * [x^n] Product_{j=1..n} (1+(n-1)*x^j)/(1-x^j) for n>0, a(0)=1.
a(n) = A321880(n)/n for n > 0, a(0) = 1.
Showing 1-2 of 2 results.