cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321884 Number A(n,k) of partitions of n into colored blocks of equal parts with colors from a set of size k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 6, 8, 5, 0, 1, 5, 8, 15, 14, 7, 0, 1, 6, 10, 24, 27, 24, 11, 0, 1, 7, 12, 35, 44, 51, 40, 15, 0, 1, 8, 14, 48, 65, 88, 93, 64, 22, 0, 1, 9, 16, 63, 90, 135, 176, 159, 100, 30, 0, 1, 10, 18, 80, 119, 192, 295, 312, 264, 154, 42, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2019

Keywords

Examples

			A(3,2) = 8: 3a, 3b, 2a1a, 2a1b, 2b1a, 2b1b, 111a, 111b.
Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,    1,    1,    1, ...
  0,  1,   2,   3,   4,   5,    6,    7,    8, ...
  0,  2,   4,   6,   8,  10,   12,   14,   16, ...
  0,  3,   8,  15,  24,  35,   48,   63,   80, ...
  0,  5,  14,  27,  44,  65,   90,  119,  152, ...
  0,  7,  24,  51,  88, 135,  192,  259,  336, ...
  0, 11,  40,  93, 176, 295,  456,  665,  928, ...
  0, 15,  64, 159, 312, 535,  840, 1239, 1744, ...
  0, 22, 100, 264, 544, 970, 1572, 2380, 3424, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000041, A015128, A264686, A266821.
Main diagonal gives A321880.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} (1+(k-1)*x^j)/(1-x^j).
A(n,k) = Sum_{i=0..floor((sqrt(1+8*k)-1)/2)} k!/(k-i)! * A321878(n,i).