A321895 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in M(u), where H is Heinz number, M is augmented monomial symmetric functions, and p is power sum symmetric functions.
1, 1, 1, 0, -1, 1, 1, 0, 0, -1, 1, 0, 1, 0, 0, 0, 0, 2, -3, 1, -1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, -1, -2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -6, 3, 8, -6, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1 1 1 0 -1 1 1 0 0 -1 1 0 1 0 0 0 0 2 -3 1 -1 1 0 0 0 -1 0 1 0 0 1 0 0 0 0 0 0 2 -1 -2 1 0 1 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 -1 0 1 0 0 0 0 -6 3 8 -6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 -1 -2 1 0 0 0 For example, row 12 gives: M(211) = 2p(4) - p(22) - 2p(31) + p(211).
Links
- Wikipedia, Symmetric polynomial
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Sum[Product[(-1)^(Length[t]-1)*(Length[t]-1)!,{t,s}],{s,Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1,{},primeMS[n]][[i]],{i,PrimeOmega[n]}],Times@@Prime/@Total/@#==m&]}],{n,18},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]
Comments