cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321899 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in F(u), where H is Heinz number, F is augmented forgotten symmetric functions, and p is power sum symmetric functions.

Original entry on oeis.org

1, 1, -1, 0, 1, 1, 1, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 2, 3, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -2, -1, -2, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 6, 3, 8, 6, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The augmented forgotten symmetric functions are given by F(y) = c(y) * f(y) where f is forgotten symmetric functions and c(y) = Product_i (y)_i!, where (y)_i is the number of i's in y.

Examples

			Triangle begins:
   1
   1
  -1   0
   1   1
   1   0   0
  -1  -1   0
  -1   0   0   0   0
   2   3   1
   1   1   0   0   0
   1   0   1   0   0
   1   0   0   0   0   0   0
  -2  -1  -2  -1   0
  -1   0   0   0   0   0   0   0   0   0   0
  -1  -1   0   0   0   0   0
  -1   0  -1   0   0   0   0
   6   3   8   6   1
   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
   2   1   2   1   0   0   0
For example, row 12 gives: F(211) = -2p(4) - p(22) - 2p(31) - p(211).
		

Crossrefs

Row sums are A130675, up to sign. Same as A321895, up to sign.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[(-1)^(Total[primeMS[m]]-PrimeOmega[m])*Product[(-1)^(Length[t]-1)*(Length[t]-1)!,{t,s}],{s,Select[sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1,{},primeMS[n]][[i]],{i,PrimeOmega[n]}],Times@@Prime/@Total/@#==m&]}],{n,18},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]