cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321900 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of p(v) in S(u), where H is Heinz number, p is power sum symmetric functions, and S is augmented Schur functions.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 2, 3, 1, -1, 0, 1, 6, 3, 8, 6, 1, 2, -3, 1, 0, 3, -4, 0, 1, -2, -1, 0, 2, 1, 24, 30, 20, 15, 20, 10, 1, 2, -1, 0, -2, 1, 120, 90, 144, 40, 15, 90, 120, 45, 40, 15, 1, -6, 0, -5, 0, 5, 5, 1, 0, -6, 4, 3, -4, 2, 1, -6, 3, 8, -6, 1, 720, 840
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
We define the augmented Schur functions to be S(y) = |y|! * s(y) / syt(y), where s is Schur functions and syt(y) is the number of standard Young tableaux of shape y.

Examples

			Triangle begins:
    1
    1
    1    1
   -1    1
    2    3    1
   -1    0    1
    6    3    8    6    1
    2   -3    1
    0    3   -4    0    1
   -2   -1    0    2    1
   24   30   20   15   20   10    1
    2   -1    0   -2    1
  120   90  144   40   15   90  120   45   40   15    1
   -6    0   -5    0    5    5    1
    0   -6    4    3   -4    2    1
   -6    3    8   -6    1
  720  840  504  420  630  504  210  280  105  210  420  105   70   21    1
    0    6   -4    3   -4   -2    1
For example, row 15 gives: S(32) = 4p(32) - 6p(41) + 3p(221) - 4p(311) + 2p(2111) + p(11111).
		

Crossrefs