A321911 Number of distinct chromatic symmetric functions of simple connected graphs with n vertices.
1, 1, 2, 6, 20, 103, 759
Offset: 1
Examples
The a(4) = 6 connected chromatic symmetric functions (m is the augmented monomial symmetric function basis): m(1111) m(211) + m(1111) 2m(211) + m(1111) m(22) + 2m(211) + m(1111) m(22) + 3m(211) + m(1111) m(31) + 3m(211) + m(1111)
Links
- Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111 (1995), 166-194.
- Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998), 267-286.
- Gus Wiseman, A partition of connected graphs, Electronic J. Combinatorics 12, N1 (2005), 8pp. arXiv:math/0505155 [math.CO].
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]; simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Union[chromSF/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,6}]
Comments