cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A229048 Number of different chromatic polynomials of a simple graph with n nodes.

Original entry on oeis.org

1, 2, 4, 9, 23, 73, 304, 1954, 23075, 607507
Offset: 1

Views

Author

Eric M. Schmidt, Sep 25 2013

Keywords

Comments

Partial sums of A245883. This may be proved using two facts: (i) the number of connected components of a graph is the multiplicity of the root 0 of the chromatic polynomial (thus the chromatic polynomial determines whether a graph is connected) and (ii) a disconnected graph is chromatically equivalent to some graph with an isolated vertex. The first statement is well known. For the latter statement, see p. 65 of [Dong]. - Eric M. Schmidt, Mar 20 2015
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman, Nov 24 2018

Examples

			From _Gus Wiseman_, Nov 24 2018: (Start)
The a(4) = 9 chromatic polynomials:
  -6x + 11x^2 - 6x^3 + x^4
  -4x +  8x^2 - 5x^3 + x^4
  -2x +  5x^2 - 4x^3 + x^4
  -3x +  6x^2 - 4x^3 + x^4
         2x^2 - 3x^3 + x^4
   -x +  3x^2 - 3x^3 + x^4
          x^2 - 2x^3 + x^4
                -x^3 + x^4
                       x^4
(End)
		

References

  • F. M. Dong, K. M. Koh, and K. L. Teo. Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Company, 2005.

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    falling[x_,k_]:=Product[(x-i),{i,0,k-1}];
    chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    Table[Length[Union[chromPoly/@simpleSpans[n]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)
  • Sage
    def A229048(n):
        return len({g.chromatic_polynomial() for g in graphs(n)})
    
  • Sage
    sorted({g.chromatic_polynomial() for g in graphs(n)})

Extensions

a(10) added by Eric M. Schmidt, Mar 20 2015

A277203 Number of distinct chromatic symmetric functions realizable by a graph on n vertices.

Original entry on oeis.org

1, 2, 4, 11, 33, 146, 939, 10932
Offset: 1

Views

Author

Sam Heil and Caleb Ji, Oct 04 2016

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895). - Gus Wiseman, Nov 21 2018

Examples

			For n = 3, under the p basis, the CSF's are: p_{1, 1, 1}, p_{1, 1, 1} - p_{2, 1}, p_{1, 1, 1} - 2p_{2, 1} + p_{3}, p_{1, 1, 1} - 3p_{2, 1} + 2p_{3}.
From _Gus Wiseman_, Nov 21 2018: (Start)
The a(4) = 11 chromatic symmetric functions (m is the augmented monomial symmetric function basis):
                                     m(1111)
                            m(211) + m(1111)
                           2m(211) + m(1111)
          m(22) +          2m(211) + m(1111)
                           3m(211) + m(1111)
          m(22) +          3m(211) + m(1111)
                   m(31) + 3m(211) + m(1111)
         2m(22) +          4m(211) + m(1111)
          m(22) +  m(31) + 4m(211) + m(1111)
         2m(22) + 2m(31) + 5m(211) + m(1111)
  m(4) + 3m(22) + 4m(31) + 6m(211) + m(1111)
(End)
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    Table[Length[Union[chromSF/@simpleSpans[n]]],{n,6}] (* Gus Wiseman, Nov 21 2018 *)

A245883 Number of distinct chromatic polynomials among all connected graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 5, 14, 50, 231, 1650, 21121, 584432
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Aug 05 2014

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman, Nov 24 2018

Examples

			From _Gus Wiseman_, Nov 24 2018: (Start)
The a(4) = 5 chromatic polynomials:
  -6x + 11x^2 - 6x^3 + x^4
  -4x +  8x^2 - 5x^3 + x^4
  -2x +  5x^2 - 4x^3 + x^4
  -3x +  6x^2 - 4x^3 + x^4
   -x +  3x^2 - 3x^3 + x^4
(End)
		

Crossrefs

Cf. A229048 (simple graphs, including disconnected ones, with unique chromatic polynomials).

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    falling[x_,k_]:=Product[(x-i),{i,0,k-1}];
    chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[chromPoly/@Select[simpleSpans[n],Length[csm[#]]==1&]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)

A321979 Number of e-positive simple labeled graphs on n vertices.

Original entry on oeis.org

1, 1, 2, 8, 60, 899
Offset: 0

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895). A graph is e-positive if, in the expansion of its chromatic symmetric function in terms of elementary symmetric functions, all coefficients are nonnegative.

Examples

			The 4 non-e-positive simple labeled graphs on 4 vertices are:
  {{1,2},{1,3},{1,4}}
  {{1,2},{2,3},{2,4}}
  {{1,3},{2,3},{3,4}}
  {{1,4},{2,4},{3,4}}
		

Crossrefs

A322064 Number of ways to choose a stable partition of a simple connected graph with n vertices.

Original entry on oeis.org

1, 1, 1, 7, 141, 6533, 631875, 123430027, 48659732725, 39107797223409, 64702785181953175, 221636039917857648631, 1575528053913118966200441, 23249384407499950496231003021, 711653666389829384034090082068939, 45128328085994437067694854477617868995
Offset: 0

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no non-singleton edge has both ends in the same block.

Examples

			The a(3) = 7 stable partitions. The simple connected graph is on top, and below is a list of all its stable partitions.
  {1,3}{2,3}     {1,2}{2,3}     {1,2}{1,3}     {1,2}{1,3}{2,3}
  --------       --------       --------       --------
  {{1,2},{3}}    {{1,3},{2}}    {{1},{2,3}}    {{1},{2},{3}}
  {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Sum[Length[Select[Subsets[Complement[Subsets[Range[n],{2}],Union@@Subsets/@stn]],And[Union@@#==Range[n],Length[csm[#]]==1]&]],{stn,sps[Range[n]]}],{n,5}]
  • PARI
    \\ See A322278 for M.
    seq(n)={concat([1], (M(n)*vectorv(n,i,1))~)} \\ Andrew Howroyd, Dec 01 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 01 2018

A321980 Row n gives the chromatic symmetric function of the n-path, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 2, 2, 0, 0, 5, 3, 7, 1, 0, 0, 0, 6, 10, 4, 6, 2, 0, 4, 0, 0, 0, 0, 7, 5, 13, 17, 6, 0, 11, 4, 1, 0, 0, 0, 0, 0, 0, 8, 6, 16, 12, 0, 22, 16, 8, 12, 20, 2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 9, 7, 19, 27, 0, 31, 10, 9, 21, 0, 58, 16, 12, 9, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
All terms are nonnegative [Stanley].

Examples

			Triangle begins:
  1
  2  0
  3  1  0
  4  2  2  0  0
  5  3  7  1  0  0  0
  6 10  4  6  2  0  4  0  0  0  0
  7  5 13 17  6  0 11  4  1  0  0  0  0  0  0
  8  6 16 12  0 22 16  8 12 20  2  0  0  6  0  0  0  0  0  0  0  0
For example, row 6 gives: X_P6 = 6e(6) + 10e(42) + 4e(51) + 6e(33) + 2e(222) + 4e(321).
		

Crossrefs

A321982 Row n gives the chromatic symmetric function of the n-ladder, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

2, 0, 12, 2, 0, 0, 0, 54, 26, 16, 0, 2, 0, 0, 0, 0, 0, 0, 216, 120, 168, 84, 0, 24, 40, 32, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 810, 648, 822, 56, 240, 870, 280, 282, 120, 24, 0, 266, 232, 0, 48, 0, 54, 0, 48, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
The n-ladder has 2*n vertices and looks like:
o-o-o- -o
| | | ... |
o-o-o- -o
Conjecture: All terms are nonnegative (verified up to the 5-ladder).

Examples

			Triangle begins:
    2   0
   12   2   0   0   0
   54  26  16   0   2   0   0   0   0   0   0
  216 120 168  84   0  24  40  32   0   0   2   0   0   [+9 more zeros]
For example, row 3 gives: X_L3 = 54e(6) + 26e(42) + 16e(51) + 2e(222).
		

Crossrefs

A321981 Row n gives the chromatic symmetric function of the n-girder, expanded in terms of elementary symmetric functions and ordered by Heinz number.

Original entry on oeis.org

1, 2, 0, 6, 0, 0, 16, 0, 2, 0, 0, 40, 12, 2, 0, 0, 0, 0, 96, 16, 44, 6, 0, 0, 0, 0, 0, 0, 0, 224, 136, 66, 52, 2, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 512, 384, 208, 96, 30, 178, 0, 18, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1152, 1024, 584, 522, 138, 588, 102
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
The n-girder has n vertices and looks like:
2-4-6- -n
|\|\|\ ... \|
1-3-5- n-1
Conjecture: All terms are nonnegative (verified up to n = 10). This is a special case of Stanley and Stembridge's poset-chain conjecture.

Examples

			Triangle begins:
    1
    2   0
    6   0   0
   16   0   2   0   0
   40  12   2   0   0   0   0
   96  16  44   6   0   0   0   0   0   0   0
  224 136  66  52   2   4   0   2   0   0   0   0   0   0   0
For example, row 6 gives: X_G6 = 96e(6) + 6e(33) + 16e(42) + 44e(51).
		

Crossrefs

A321994 Number of different chromatic symmetric functions of hypertrees on n vertices.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 59, 165
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is augmented monomial symmetric functions (see A321895).
Stanley conjectured that the number of distinct chromatic symmetric functions of trees with n vertices is equal to A000055, i.e., the chromatic symmetric function distinguishes between trees. It has been proven for trees with up to 25 vertices. If it is true in general, does the chromatic symmetric function also distinguish between hypertrees, meaning this sequence would be equal to A035053?

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    density[c_]:=Total[(Length[#]-1&)/@c]-Length[Union@@c];
    hyall[n_]:=Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Or[SubsetQ[#1,#2],Length[Intersection[#1,#2]]>1]&],And[Union@@#==Range[n],Length[csm[#]]==1,density[#]==-1]&];
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    Table[Length[Union[chromSF/@If[n==1,{{{1}}},hyall[n]]]],{n,5}]

A322011 Number of distinct chromatic symmetric functions of spanning hypergraphs (or antichain covers) on n vertices.

Original entry on oeis.org

1, 2, 5, 19, 121
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is the augmented monomial symmetric function basis (see A321895).

Examples

			The a(3) = 5 chromatic symmetric functions:
                  m(111)
          m(21) + m(111)
         2m(21) + m(111)
         3m(21) + m(111)
  m(3) + 3m(21) + m(111)
		

Crossrefs

Programs

  • Mathematica
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    hyps[n_]:=Select[stableSets[Rest[Subsets[Range[n]]],SubsetQ],Union@@#==Range[n]&];
    Table[Length[Union[chromSF/@hyps[n]]],{n,5}]
Showing 1-10 of 11 results. Next