cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A229048 Number of different chromatic polynomials of a simple graph with n nodes.

Original entry on oeis.org

1, 2, 4, 9, 23, 73, 304, 1954, 23075, 607507
Offset: 1

Views

Author

Eric M. Schmidt, Sep 25 2013

Keywords

Comments

Partial sums of A245883. This may be proved using two facts: (i) the number of connected components of a graph is the multiplicity of the root 0 of the chromatic polynomial (thus the chromatic polynomial determines whether a graph is connected) and (ii) a disconnected graph is chromatically equivalent to some graph with an isolated vertex. The first statement is well known. For the latter statement, see p. 65 of [Dong]. - Eric M. Schmidt, Mar 20 2015
A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic polynomial is given by chi_G(x) = Sum_p (x)k, where the sum is over all stable partitions of G, k is the length (number of blocks) of p, and (x)_k is the falling factorial x(x-1)(x-2)...(x-k+1). - _Gus Wiseman, Nov 24 2018

Examples

			From _Gus Wiseman_, Nov 24 2018: (Start)
The a(4) = 9 chromatic polynomials:
  -6x + 11x^2 - 6x^3 + x^4
  -4x +  8x^2 - 5x^3 + x^4
  -2x +  5x^2 - 4x^3 + x^4
  -3x +  6x^2 - 4x^3 + x^4
         2x^2 - 3x^3 + x^4
   -x +  3x^2 - 3x^3 + x^4
          x^2 - 2x^3 + x^4
                -x^3 + x^4
                       x^4
(End)
		

References

  • F. M. Dong, K. M. Koh, and K. L. Teo. Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Company, 2005.

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    falling[x_,k_]:=Product[(x-i),{i,0,k-1}];
    chromPoly[g_]:=Expand[Sum[falling[x,Length[stn]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]];
    simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
    Table[Length[Union[chromPoly/@simpleSpans[n]]],{n,5}] (* Gus Wiseman, Nov 24 2018 *)
  • Sage
    def A229048(n):
        return len({g.chromatic_polynomial() for g in graphs(n)})
    
  • Sage
    sorted({g.chromatic_polynomial() for g in graphs(n)})

Extensions

a(10) added by Eric M. Schmidt, Mar 20 2015

A322011 Number of distinct chromatic symmetric functions of spanning hypergraphs (or antichain covers) on n vertices.

Original entry on oeis.org

1, 2, 5, 19, 121
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is the augmented monomial symmetric function basis (see A321895).

Examples

			The a(3) = 5 chromatic symmetric functions:
                  m(111)
          m(21) + m(111)
         2m(21) + m(111)
         3m(21) + m(111)
  m(3) + 3m(21) + m(111)
		

Crossrefs

Programs

  • Mathematica
    chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    hyps[n_]:=Select[stableSets[Rest[Subsets[Range[n]]],SubsetQ],Union@@#==Range[n]&];
    Table[Length[Union[chromSF/@hyps[n]]],{n,5}]

A322012 Number of s-positive simple labeled graphs with n vertices.

Original entry on oeis.org

1, 2, 8, 60, 1009
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no edge has both ends in the same block. The chromatic symmetric function is given by X_G = Sum_p m(t(p)) where the sum is over all stable partitions of G, t(p) is the integer partition whose parts are the block-sizes of p, and m is the augmented monomial symmetric function basis (see A321895). A graph is s-positive if, in the expansion of its chromatic symmetric function in terms of Schur functions, all coefficients are nonnegative.

Crossrefs

A322066 Number of e-positive antichains of sets spanning n vertices.

Original entry on oeis.org

1, 1, 2, 8, 64, 1299
Offset: 0

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

A stable partition of a hypergraph or set system is a set partition of the vertices where no non-singleton edge has all its vertices in the same block. The chromatic symmetric function is given by X_G = Sum_pi m(t(pi)) where the sum is over all stable partitions pi of G, t(pi) is the integer partition whose parts are the block-sizes of pi, and m is the basis of augmented monomial symmetric functions (see A321895). A hypergraph or set system is e-positive if, in the expansion of its chromatic symmetric function in terms of elementary functions, all coefficients are nonnegative.

Examples

			The a(3) = 8 e-positive antichains:
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
The antichain {{1,2,3}} is not e-positive, as its chromatic symmetric function is -3e(3) + 3e(21).
		

Crossrefs

Showing 1-4 of 4 results.