A321914 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.
1, -2, 1, 1, 0, 3, -3, 1, -3, 1, 0, 1, 0, 0, -4, 2, 4, -4, 1, 2, 1, -2, 0, 0, 4, -2, -1, 1, 0, -4, 0, 1, 0, 0, 1, 0, 0, 0, 0, 5, -5, -5, 5, 5, -5, 1, -5, 1, 5, -3, -1, 1, 0, -5, 5, -1, 1, -2, 0, 0, 5, -3, 1, 0, 0, 0, 0, 5, -1, -2, 0, 1, 0, 0, -5, 1, 0, 0, 0, 0
Offset: 1
Examples
Tetrangle begins (zeroes not shown): (1): 1 . (2): -2 1 (11): 1 . (3): 3 -3 1 (21): -3 1 (111): 1 . (4): -4 2 4 -4 1 (22): 2 1 -2 (31): 4 -2 -1 1 (211): -4 1 (1111): 1 . (5): 5 -5 -5 5 5 -5 1 (41): -5 1 5 -3 -1 1 (32): -5 5 -1 1 -2 (221): 5 -3 1 (311): 5 -1 -2 1 (2111): -5 1 (11111): 1 For example, row 14 gives: m(32) = -5e(5) - e(32) + 5e(41) + e(221) - 2e(311).
Links
- Wikipedia, Symmetric polynomial
Comments