A321916 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in h(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and h is homogeneous symmetric functions.
1, -1, 1, 0, 1, 1, -2, 1, 0, -1, 1, 0, 0, 1, -1, 1, 2, -3, 1, 0, 1, 0, -2, 1, 0, 0, 1, -2, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 1, -2, -2, 3, 3, -4, 1, 0, -1, 0, 1, 2, -3, 1, 0, 0, -1, 2, 1, -3, 1, 0, 0, 0, 1, 0, -2, 1, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, -1, 1
Offset: 1
Examples
Tetrangle begins (zeroes not shown): (1): 1 . (2): -1 1 (11): 1 . (3): 1 -2 1 (21): -1 1 (111): 1 . (4): -1 1 2 -3 1 (22): 1 -2 1 (31): 1 -2 1 (211): -1 1 (1111): 1 . (5): 1 -2 -2 3 3 -4 1 (41): -1 1 2 -3 1 (32): -1 2 1 -3 1 (221): 1 -2 1 (311): 1 -2 1 (2111): -1 1 (11111): 1 For example, row 14 gives: h(32) = -e(32) + 2e(221) + e(311) - 3e(2111) + e(11111).
Links
- Wikipedia, Symmetric polynomial
Comments