A321918 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in p(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and p is power sum symmetric functions.
1, -2, 1, 0, 1, 3, -3, 1, 0, -2, 1, 0, 0, 1, -4, 2, 4, -4, 1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 1, 5, -5, -5, 5, 5, -5, 1, 0, -4, 0, 2, 4, -4, 1, 0, 0, -6, 6, 3, -5, 1, 0, 0, 0, 4, 0, -4, 1, 0, 0, 0, 0, 3, -3, 1, 0, 0, 0, 0, 0, -2, 1
Offset: 1
Examples
Tetrangle begins (zeroes not shown): (1): 1 . (2): -2 1 (11): 1 . (3): 3 -3 1 (21): -2 1 (111): 1 . (4): -4 2 4 -4 1 (22): 4 -4 1 (31): 3 -3 1 (211): -2 1 (1111): 1 . (5): 5 -5 -5 5 5 -5 1 (41): -4 2 4 -4 1 (32): -6 6 3 -5 1 (221): 4 -4 1 (311): 3 -3 1 (2111): -2 1 (11111): 1 For example, row 14 gives: p(32) = -6e(32) + 6e(221) + 3e(311) - 5e(2111) + e(11111).
Links
- Wikipedia, Symmetric polynomial
Comments