A321919 Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in p(u), where u and v are integer partitions of n, H is Heinz number, h is homogeneous symmetric functions, and p is power sum symmetric functions.
1, 2, -1, 0, 1, 3, -3, 1, 0, 2, -1, 0, 0, 1, 4, -2, -4, 4, -1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 1, 5, -5, -5, 5, 5, -5, 1, 0, 4, 0, -2, -4, 4, -1, 0, 0, 6, -6, -3, 5, -1, 0, 0, 0, 4, 0, -4, 1, 0, 0, 0, 0, 3, -3, 1, 0, 0, 0, 0, 0, 2
Offset: 1
Examples
Tetrangle begins (zeroes not shown): (1): 1 . (2): 2 -1 (11): 1 . (3): 3 -3 1 (21): 2 -1 (111): 1 . (4): 4 -2 -4 4 -1 (22): 4 -4 1 (31): 3 -3 1 (211): 2 -1 (1111): 1 . (5): 5 -5 -5 5 5 -5 1 (41): 4 -2 -4 4 -1 (32): 6 -6 -3 5 -1 (221): 4 -4 1 (311): 3 -3 1 (2111): 2 -1 (11111): 1 For example, row 14 gives: p(32) = 6h(32) - 6h(221) - 3h(311) + 5h(2111) - h(11111).
Links
- Wikipedia, Symmetric polynomial
Comments