cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321919 Tetrangle where T(n,H(u),H(v)) is the coefficient of h(v) in p(u), where u and v are integer partitions of n, H is Heinz number, h is homogeneous symmetric functions, and p is power sum symmetric functions.

Original entry on oeis.org

1, 2, -1, 0, 1, 3, -3, 1, 0, 2, -1, 0, 0, 1, 4, -2, -4, 4, -1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 1, 5, -5, -5, 5, 5, -5, 1, 0, 4, 0, -2, -4, 4, -1, 0, 0, 6, -6, -3, 5, -1, 0, 0, 0, 4, 0, -4, 1, 0, 0, 0, 0, 3, -3, 1, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):   2 -1
  (11):     1
.
  (3):    3 -3  1
  (21):      2 -1
  (111):        1
.
  (4):     4 -2 -4  4 -1
  (22):       4    -4  1
  (31):          3 -3  1
  (211):            2 -1
  (1111):              1
.
  (5):      5 -5 -5  5  5 -5  1
  (41):        4    -2 -4  4 -1
  (32):           6 -6 -3  5 -1
  (221):             4    -4  1
  (311):                3 -3  1
  (2111):                  2 -1
  (11111):                    1
For example, row 14 gives: p(32) = 6h(32) - 6h(221) - 3h(311) + 5h(2111) - h(11111).
		

Crossrefs

This is a regrouping of the triangle A321754.