cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321925 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in m(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and m is monomial symmetric functions.

Original entry on oeis.org

1, 1, -1, 0, 1, 1, -1, 1, 0, 1, -2, 0, 0, 1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 1, 0, -1, 1, -1, 2, 0, 0, 0, 1, -3, 0, 0, 0, 0, 1, 1, -1, 0, 0, 1, -1, 1, 0, 1, -1, 1, -1, 1, -2, 0, 0, 1, -1, -1, 2, -2, 0, 0, 0, 1, 0, -2, 3, 0, 0, 0, -1, 1, -1, 3, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):   1 -1
  (11):     1
.
  (3):    1 -1  1
  (21):      1 -2
  (111):        1
.
  (4):     1    -1  1 -1
  (22):       1    -1  1
  (31):      -1  1 -1  2
  (211):            1 -3
  (1111):              1
.
  (5):      1 -1        1 -1  1
  (41):        1 -1  1 -1  1 -2
  (32):           1 -1 -1  2 -2
  (221):             1    -2  3
  (311):            -1  1 -1  3
  (2111):                  1 -4
  (11111):                    1
For example, row 14 gives: m(32) = s(32) - s(221) - s(311) + 2s(2111) - 2s(11111).
		

Crossrefs

This is a regrouping of the triangle A321763.