A321925 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in m(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and m is monomial symmetric functions.
1, 1, -1, 0, 1, 1, -1, 1, 0, 1, -2, 0, 0, 1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 1, 0, -1, 1, -1, 2, 0, 0, 0, 1, -3, 0, 0, 0, 0, 1, 1, -1, 0, 0, 1, -1, 1, 0, 1, -1, 1, -1, 1, -2, 0, 0, 1, -1, -1, 2, -2, 0, 0, 0, 1, 0, -2, 3, 0, 0, 0, -1, 1, -1, 3, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Tetrangle begins (zeroes not shown): (1): 1 . (2): 1 -1 (11): 1 . (3): 1 -1 1 (21): 1 -2 (111): 1 . (4): 1 -1 1 -1 (22): 1 -1 1 (31): -1 1 -1 2 (211): 1 -3 (1111): 1 . (5): 1 -1 1 -1 1 (41): 1 -1 1 -1 1 -2 (32): 1 -1 -1 2 -2 (221): 1 -2 3 (311): -1 1 -1 3 (2111): 1 -4 (11111): 1 For example, row 14 gives: m(32) = s(32) - s(221) - s(311) + 2s(2111) - 2s(11111).
Links
- Wikipedia, Symmetric polynomial
Comments