cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321926 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in p(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and p is power sum symmetric functions.

Original entry on oeis.org

1, 1, -1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 2, 1, 1, 0, -1, 1, -1, 1, 2, -1, -1, 1, 1, -1, 0, 0, 1, 1, 0, 1, -1, -1, 1, 2, 3, 3, 1, 1, -1, 0, 0, 1, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 1, -1, 0, 1, -1, 1, 0, 1, 1, -2, 0, 1, 1, 1, -1, -1, 0, 1, 1, 1, 2, 1, -1, 0, -2
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):   1 -1
  (11):  1  1
.
  (3):    1 -1  1
  (21):   1    -1
  (111):  1  2  1
.
  (4):     1    -1  1 -1
  (22):    1  2 -1 -1  1
  (31):    1 -1        1
  (211):   1     1 -1 -1
  (1111):  1  2  3  3  1
.
  (5):      1 -1        1 -1  1
  (41):     1    -1  1       -1
  (32):     1 -1  1 -1     1 -1
  (221):    1     1  1 -2     1
  (311):    1  1 -1 -1     1  1
  (2111):   1  2  1 -1    -2 -1
  (11111):  1  4  5  5  6  4  1
For example, row 14 gives: p(32) = s(5) + s(32) - s(41) - s(221) + s(2111) - s(11111).
		

Crossrefs

Row sums are A317552. This is a regrouping of the triangle A321765.