A321926 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in p(u), where u and v are integer partitions of n, H is Heinz number, s is Schur functions, and p is power sum symmetric functions.
1, 1, -1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 2, 1, 1, 0, -1, 1, -1, 1, 2, -1, -1, 1, 1, -1, 0, 0, 1, 1, 0, 1, -1, -1, 1, 2, 3, 3, 1, 1, -1, 0, 0, 1, -1, 1, 1, 0, -1, 1, 0, 0, -1, 1, -1, 1, -1, 0, 1, -1, 1, 0, 1, 1, -2, 0, 1, 1, 1, -1, -1, 0, 1, 1, 1, 2, 1, -1, 0, -2
Offset: 1
Examples
Tetrangle begins (zeroes not shown): (1): 1 . (2): 1 -1 (11): 1 1 . (3): 1 -1 1 (21): 1 -1 (111): 1 2 1 . (4): 1 -1 1 -1 (22): 1 2 -1 -1 1 (31): 1 -1 1 (211): 1 1 -1 -1 (1111): 1 2 3 3 1 . (5): 1 -1 1 -1 1 (41): 1 -1 1 -1 (32): 1 -1 1 -1 1 -1 (221): 1 1 1 -2 1 (311): 1 1 -1 -1 1 1 (2111): 1 2 1 -1 -2 -1 (11111): 1 4 5 5 6 4 1 For example, row 14 gives: p(32) = s(5) + s(32) - s(41) - s(221) + s(2111) - s(11111).
Links
- Wikipedia, Symmetric polynomial
Comments