cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321930 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in f(u), where u and v are integer partitions of n, H is Heinz number, f is forgotten symmetric functions, and s is Schur functions.

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 1, -2, 1, 0, 1, 0, 0, -1, 0, 1, -1, 1, 1, 1, -1, 0, 0, 2, -1, -1, 1, 0, -3, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -2, 1, 1, -1, -1, 1, 0, -2, 2, -1, 1, -1, 0, 0, 3, -2, 1, 0, 0, 0, 0, 3, -1, -1, 0, 1, 0, 0, -4, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Tetrangle begins (zeros not shown):
  (1):  1
.
  (2):  -1  1
  (11):  1
.
  (3):    1 -1  1
  (21):  -2  1
  (111):  1
.
  (4):    -1     1 -1  1
  (22):    1  1 -1
  (31):    2 -1 -1  1
  (211):  -3     1
  (1111):  1
.
  (5):      1 -1        1 -1  1
  (41):    -2  1  1 -1 -1  1
  (32):    -2  2 -1  1 -1
  (221):    3 -2  1
  (311):    3 -1 -1     1
  (2111):  -4  1
  (11111):  1
For example, row 14 gives: f(32) = -2s(5) - s(32) + 2s(41) + s(221) - s(311).
		

Crossrefs

This is a regrouping of the triangle A321894.