A321932 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in e(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and e is elementary symmetric functions.
1, -1, 1, 0, 1, 2, -3, 1, 0, -1, 1, 0, 0, 1, -6, 3, 8, -6, 1, 0, 1, 0, -2, 1, 0, 0, 2, -3, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, 24, -30, -20, 15, 20, -10, 1, 0, -6, 0, 3, 8, -6, 1, 0, 0, -2, 3, 2, -4, 1, 0, 0, 0, 1, 0, -2, 1, 0, 0, 0, 0, 2, -3, 1, 0, 0, 0, 0, 0
Offset: 1
Examples
Tetrangle begins (zeros not shown): (1): 1 . (2): -1 1 (11): 1 . (3): 2 -3 1 (21): -1 1 (111): 1 . (4): -6 3 8 -6 1 (22): 1 -2 1 (31): 2 -3 1 (211): -1 1 (1111): 1 . (5): 24 30 20 15 20 10 1 (41): -6 3 8 -6 1 (32): -2 3 2 -4 1 (221): 1 -2 1 (311): 2 -3 1 (2111): -1 1 (11111): 1 For example, row 14 gives: 12e(32) = -2p(32) + 3p(221) + 2p(311) - 4p(2111) + p(11111).
Links
- Wikipedia, Symmetric polynomial
Comments