A321933 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in h(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions.
1, 1, 1, 0, 1, 2, 3, 1, 0, 1, 1, 0, 0, 1, 6, 3, 8, 6, 1, 0, 1, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 24, 30, 20, 15, 20, 10, 1, 0, 6, 0, 3, 8, 6, 1, 0, 0, 2, 3, 2, 4, 1, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1
Examples
Tetrangle begins (zeros not shown): (1): 1 . (2): 1 1 (11): 1 . (3): 2 3 1 (21): 1 1 (111): 1 . (4): 6 3 8 6 1 (22): 1 2 1 (31): 2 3 1 (211): 1 1 (1111): 1 . (5): 24 30 20 15 20 10 1 (41): 6 3 8 6 1 (32): 2 3 2 4 1 (221): 1 2 1 (311): 2 3 1 (2111): 1 1 (11111): 1 For example, row 14 gives: 12h(32) = 2p(32) + 3p(221) + 2p(311) + 4p(2111) + p(11111).
Links
- Wikipedia, Symmetric polynomial
Comments