A321934 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in F(u), where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and F is augmented forgotten symmetric functions.
1, -1, 0, 1, 1, 1, 0, 0, -1, -1, 0, 2, 3, 1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, -2, -1, -2, -1, 0, 6, 3, 8, 6, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 2, 1, 0, 1, 0, 0, -6, -6, -5, -3, -3, -1, 0
Offset: 1
Examples
Tetrangle begins (zeros not shown): (1): 1 . (2): -1 (11): 1 1 . (3): 1 (21): -1 -1 (111): 2 3 1 . (4): -1 (22): 1 1 (31): 1 1 (211): -2 -1 -2 -1 (1111): 6 3 8 6 1 . (5): 1 (41): -1 -1 (32): -1 -1 (221): 2 1 2 1 (311): 2 2 1 1 (2111): -6 -6 -5 -3 -3 -1 (11111): 24 30 20 15 20 10 1 For example, row 14 gives: F(32) = -p(5) - p(32).
Links
- Wikipedia, Symmetric polynomial
Comments