A321943 Decimal expansion of Ni_1 = (1/2)*(gamma - log(2*Pi)) + 1, where gamma is Euler's constant (or the Euler-Mascheroni constant).
3, 6, 9, 6, 6, 9, 2, 9, 9, 2, 4, 6, 0, 9, 3, 6, 8, 8, 5, 2, 2, 9, 2, 6, 3, 0, 8, 6, 3, 5, 5, 8, 3, 5, 7, 5, 6, 5, 9, 6, 8, 2, 1, 9, 4, 3, 3, 2, 1, 7, 8, 3, 8, 6, 5, 8, 5, 7, 3, 2, 0, 7, 6, 9, 5, 9, 6, 6, 8, 1, 6, 7, 4, 6, 1, 5, 7, 1, 9, 3, 7, 7, 7, 3, 7, 3, 0
Offset: 0
Examples
0.369669299246093688522926308635583575659682194332178386585...
References
- D. Suryanarayana, Sums of Riemann zeta function, Math. Student, 42 (1974), 141-143.
Links
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- B. Candelpergher, Ramanujan summation of divergent series, HAL Id : hal-01150208; Lecture Notes in Math. Series (Springer), 2185, (2017), 93.
- Marc-Antoine Coppo, A note on some alternating series involving zeta and multiple zeta values, Journal of Mathematical Analysis and Applications Volume 475, Issue 2, 15 July 2019, Pages 1831-1841; Preprint,
, 2018. - Michael I. Shamos, A catalog of the real numbers, (2007). See p. 378.
- R. J. Singh and V. P. Verma, Some series involving Riemann zeta function, Yokohama Math. J. 31 (1983), 1-4.
- H. M. Srivastava, Sums of certain series of the Riemann zeta function, J. Math. Anal. App. 134 (1988), 129-140.
Programs
-
Maple
Digits := 100; evalf((1/2)*(gamma-ln(2*Pi))+1);
-
Mathematica
First[RealDigits[N[(1/2)*(EulerGamma-Log[2*Pi])+1, 100], 10]]
-
PARI
(1/2)*(Euler-log(2*Pi))+1
-
Python
from mpmath import * mp.dps = 100; mp.pretty = True +(1/2)*(euler-log(2*pi))+1
Comments