cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321943 Decimal expansion of Ni_1 = (1/2)*(gamma - log(2*Pi)) + 1, where gamma is Euler's constant (or the Euler-Mascheroni constant).

Original entry on oeis.org

3, 6, 9, 6, 6, 9, 2, 9, 9, 2, 4, 6, 0, 9, 3, 6, 8, 8, 5, 2, 2, 9, 2, 6, 3, 0, 8, 6, 3, 5, 5, 8, 3, 5, 7, 5, 6, 5, 9, 6, 8, 2, 1, 9, 4, 3, 3, 2, 1, 7, 8, 3, 8, 6, 5, 8, 5, 7, 3, 2, 0, 7, 6, 9, 5, 9, 6, 6, 8, 1, 6, 7, 4, 6, 1, 5, 7, 1, 9, 3, 7, 7, 7, 3, 7, 3, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 12 2018

Keywords

Comments

This constant links Euler's constant and Pi to the values of the Riemann zeta function at positive integers (see formulas).

Examples

			0.369669299246093688522926308635583575659682194332178386585...
		

References

  • D. Suryanarayana, Sums of Riemann zeta function, Math. Student, 42 (1974), 141-143.

Crossrefs

Cf. A001620 (Euler's constant), A000796 (Pi).

Programs

  • Maple
    Digits := 100; evalf((1/2)*(gamma-ln(2*Pi))+1);
  • Mathematica
    First[RealDigits[N[(1/2)*(EulerGamma-Log[2*Pi])+1, 100], 10]]
  • PARI
    (1/2)*(Euler-log(2*Pi))+1
    
  • Python
    from mpmath import *
    mp.dps = 100; mp.pretty = True
    +(1/2)*(euler-log(2*pi))+1

Formula

Ni_1 = Sum_{k>=2} (-1)^k*zeta(k)/(k+1).
Ni_1 = Sum_{n>0} (Integral_{x=0..1} x^2*(1-x)_{n-1} dx)/(n*n!), where (z)_n = z*(z+1)*(z+2)*...*(z+n-1) is the Pochhammer symbol.
Ni_1 = Sum_{n>=0} A193546(n)/(A000290(n + 1)*A194506(n)).