A321944 Starting from n, repeatedly compute the sum of the prime divisors until a fixed point or 0 is reached; a(n) is the number of terms, including n.
2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 3, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 2, 4, 2, 3, 1, 3, 1, 2, 4, 2, 3, 2, 1, 4, 3, 2, 1, 3, 1, 2, 3, 3, 1, 2, 2, 2, 3, 4, 1, 2, 3, 3, 3, 2, 1, 3, 1, 5, 3, 2, 3, 3, 1, 2, 5, 4, 1, 2, 1, 4, 3, 4, 3, 3, 1, 2, 2, 2, 1, 3, 3, 4, 3, 2, 1, 3
Offset: 1
Keywords
Examples
For n=21: 21->{3,7} 3+7=10, 10->{2,5} 2+5=7, 7->{7} 7; 3 terms found {21,10,7}, therefore a(21) = 3. For n=2: 2->{2} 2, 1 term found {2}, therefore a(2) = 1. For n=1: 1->{} 0, 2 term found {1,0}, therefore a(1) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) option remember; if isprime(n) then 1 else 1+procname(convert(numtheory:-factorset(n),`+`)) fi end proc: f(1):= 2: map(f, [$1..100]); # Robert Israel, Mar 30 2020
-
Mathematica
s[n_] := DivisorSum[n, # &, PrimeQ[#] &]; a[1] = 2; a[n_] := Length[ FixedPointList[s, n]] - 1; Array[a, 60, 0] (* Amiram Eldar, Dec 12 2018 *)
-
PARI
a(n)={my(k=1); while(n&&!isprime(n), k++; n=vecsum(factor(n)[, 1])); k} \\ Andrew Howroyd, Dec 12 2018
Comments