A321959 a(n) = [x^n] ((1 - x)*x)/((1 - 2*x)^2*(2*x^2 - 2*x + 1)).
0, 1, 5, 16, 42, 100, 228, 512, 1144, 2544, 5616, 12288, 26656, 57408, 122944, 262144, 556928, 1179392, 2490112, 5242880, 11010560, 23069696, 48235520, 100663296, 209713152, 436203520, 905965568, 1879048192, 3892322304, 8053080064, 16643014656, 34359738368
Offset: 0
Examples
G.f. = x + 5*x^2 + 16*x^3 + 42*x^4 + 100*x^5 + 228*x^6 + ... - _Michael Somos_, Sep 30 2022
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-8).
Crossrefs
Antidiagonal sums of A323100.
Programs
-
Maple
ogf := ((1 - x)*x)/((1 - 2*x)^2*(2*x^2 - 2*x + 1)); ser := series(ogf, x, 32): seq(coeff(ser, x, n), n=0..31);
-
Mathematica
LinearRecurrence[{6,-14,16,-8}, {0,1,5,16}, 32] (* Georg Fischer, May 08 2021 *)
-
PARI
{a(n) = if(n<0, 0, polcoeff( x*(1 - x) / ((1 - 2*x)^2*(1 - 2*x + 2*x^2)), n))}; /* Michael Somos, Sep 30 2022 */
Formula
a(n) = Sum_{k=0..n} A323100(n - k, k).
a(n) = n! [x^n] exp(x)*(exp(x)*(2*x + 1) - sin(x) - cos(x))/2.
a(n) = 2*((2*n+2)*a(n-3) - (3*n+2)*a(n-2) + (2*n+1)*a(n-1))/n for n >= 4.
a(2^n - 1) = 2^(2^n + n - 2) if n>1. - Michael Somos, Sep 30 2022