cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321959 a(n) = [x^n] ((1 - x)*x)/((1 - 2*x)^2*(2*x^2 - 2*x + 1)).

Original entry on oeis.org

0, 1, 5, 16, 42, 100, 228, 512, 1144, 2544, 5616, 12288, 26656, 57408, 122944, 262144, 556928, 1179392, 2490112, 5242880, 11010560, 23069696, 48235520, 100663296, 209713152, 436203520, 905965568, 1879048192, 3892322304, 8053080064, 16643014656, 34359738368
Offset: 0

Views

Author

Peter Luschny, Jan 12 2019

Keywords

Examples

			G.f. = x + 5*x^2 + 16*x^3 + 42*x^4 + 100*x^5 + 228*x^6 + ... - _Michael Somos_, Sep 30 2022
		

Crossrefs

Antidiagonal sums of A323100.

Programs

  • Maple
    ogf := ((1 - x)*x)/((1 - 2*x)^2*(2*x^2 - 2*x + 1));
    ser := series(ogf, x, 32): seq(coeff(ser, x, n), n=0..31);
  • Mathematica
    LinearRecurrence[{6,-14,16,-8}, {0,1,5,16}, 32] (* Georg Fischer, May 08 2021 *)
  • PARI
    {a(n) = if(n<0, 0, polcoeff( x*(1 - x) / ((1 - 2*x)^2*(1 - 2*x + 2*x^2)), n))}; /* Michael Somos, Sep 30 2022 */

Formula

a(n) = Sum_{k=0..n} A323100(n - k, k).
a(n) = n! [x^n] exp(x)*(exp(x)*(2*x + 1) - sin(x) - cos(x))/2.
a(n) = 2*((2*n+2)*a(n-3) - (3*n+2)*a(n-2) + (2*n+1)*a(n-1))/n for n >= 4.
a(2^n - 1) = 2^(2^n + n - 2) if n>1. - Michael Somos, Sep 30 2022