Original entry on oeis.org
1, 1, 2, 5, 15, 54, 227, 1085, 5774, 33679, 212807, 1443622, 10439565, 80016693, 646976322, 5496339141, 48894262619, 454113866430, 4392175247939, 44138842357617, 459956754593094, 4961220069886511, 55301147935270395, 636091223462294518, 7539926971001192381
Offset: 0
-
def A321958List(l):
def row(n, dim):
m = 1
for k in range(dim-1, -1, -1):
ax = (n+k)*x
m = 1 - ax - (ax*x)/m
return SR(1/m).series(x, dim).list()
return [sum(row(n-k, n+1)[k] for k in (0..n)) for n in (0..l-1)]
A321958List(16)
A321964
Array of sequences read by descending antidiagonals, row A(n) is Stieltjes generated from the sequence n, n+1, n+2, n+3, ....
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 10, 3, 1, 0, 105, 74, 21, 4, 1, 0, 945, 706, 207, 36, 5, 1, 0, 10395, 8162, 2529, 444, 55, 6, 1, 0, 135135, 110410, 36243, 6636, 815, 78, 7, 1, 0, 2027025, 1708394, 591381, 114084, 14425, 1350, 105, 8, 1
Offset: 0
First few rows of the array start:
[0] 1, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[2] 1, 2, 10, 74, 706, 8162, 110410, 1708394, ... A000698
[3] 1, 3, 21, 207, 2529, 36243, 591381, 10786527, ... A167872
[4] 1, 4, 36, 444, 6636, 114084, 2194596, 46460124, ... A321963
[5] 1, 5, 55, 815, 14425, 289925, 6444175, 155928575, ...
[6] 1, 6, 78, 1350, 27630, 636390, 16074990, 438572070, ...
Seen as triangle:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 3, 2, 1;
[4] 0, 15, 10, 3, 1;
[5] 0, 105, 74, 21, 4, 1;
[6] 0, 945, 706, 207, 36, 5, 1;
[7] 0, 10395, 8162, 2529, 444, 55, 6, 1;
[8] 0, 135135, 110410, 36243, 6636, 815, 78, 7, 1;
-
JacobiCF := proc(a, b, p:=2) local m, k;
m := 1;
for k from nops(a) by -1 to 1 do
m := 1 - b[k]*x - a[k]*x^p/m od;
return 1/m end:
JacobiGF := proc(a, b, p:=2) local cf, l, ser;
cf := JacobiCF(a, b, p);
l := min(nops(a), nops(b));
ser := series(cf, x, l);
seq(coeff(ser, x, n), n = 0..l-1) end:
JacobiSquare := proc(a, p:=2) local cf, ser;
cf := JacobiCF(a, a, p);
ser := series(cf, x, nops(a));
seq(coeff(ser, x, n), n = 0..nops(a)-1) end:
StieltjesGF := proc(a, p:=2) local z, cf, ser;
z := [seq(0, n = 1..nops(a))];
cf := JacobiCF(a, z, p);
ser := series(cf, x, nops(a));
seq(coeff(ser, x, n), n = 0..nops(a)-1) end:
s := n -> [seq(n+k, k = 0..9)]:
Trow := n -> StieltjesGF(s(n), 1):
for n from 0 to 6 do lprint(Trow(n)) od;
-
nmax = 9;
JacobiCF[a_, b_, p_:2] := Module[{m, k}, m = 1; For[k = Length[a] , k >= 1, k--, m = 1 - b[[k]]*x - a[[k]]*x^p/m ]; 1/m];
JacobiGF[a_, b_, p_:2] := Module[{cf, l, ser}, cf = JacobiCF[a, b, p]; l = Min[Length[a], Length[b]]; ser = Series[cf, {x, 0, l}]; CoefficientList[ ser, x]];
JacobiSquare[a_, p_:2] := Module[{cf, ser}, cf = JacobiCF[a, a, p]; ser = Series[cf, {x, 0, Length[a]}]; CoefficientList[ser, x]];
StieltjesGF[a_, p_:2] := Module[{z, cf, ser}, z = Table[0, Length[a]]; cf = JacobiCF[a, z, p]; ser = Series[cf, {x, 0, Length[a]}]; CoefficientList[ ser, x]];
s[n_] := Table[n + k, {k, 0, nmax}];
Trow[0] = Table[Boole[k == 0], {k, 0, nmax}];
Trow[n_] := Trow[n] = StieltjesGF[s[n], 1] ;
T[n_, k_] := Trow[n][[k + 1]];
Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 07 2019, translated from Maple *)
-
# uses[StieltjesGF from A321960]
def Trow(n, dim): return StieltjesGF(lambda k: n+k, dim, p=1)
for n in (0..7): print(Trow(n, 9))
Showing 1-2 of 2 results.