cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321983 Let p be A293652(n), a(n) is the smallest composite number whose greatest prime factor is the n-th prime below p and whose prime factors add up to p.

Original entry on oeis.org

6, 6501, 526809, 419709, 5116053, 14923101, 397013259, 441623073, 2276169717, 1290664569, 38449648947, 112155723039, 122976253119, 507181098441, 25104075429, 525044080551, 2801263972359, 11894687774967, 8825968853913, 27500380094379
Offset: 1

Views

Author

Michel Marcus, Nov 23 2018

Keywords

Examples

			a(1) = 6 since 6 = 3 * 2, the smallest composite number whose prime divisors add to 5, is a multiple of 3, the greatest prime < 5, where 5 = A293652(1).
a(2) = 6501 since 6501 = 3 * 11 * 197, the smallest composite whose prime divisors add to 211, and 197 < 199 < 211 is the second prime below 211, where 211 = A293652(2)
a(3) = 526809 since 526809 = 3 * 41 * 4283, the smallest composite whose prime divisors add to 4327, and 4283 < 4289 < 4297 < 4327 is the third prime below 4327, where 4327 = A293652(3).
		

Crossrefs

Programs

  • PARI
    sopfr(k) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]); \\ A001414
    isok(k, n) = sopfr(k) == n;
    a056240(n) = my(k=2); while(!isok(k, n), k++); k;
    a(p, n) = {newp = p; for (k=1, n, newp = precprime(newp-1)); newp*a056240(p-newp);}
    lista() = {vp = [5, 211, 4327, 4547, ...,  ]; /* A293652 */ for (n=1, #vp, print1(chk(vp[n], n), ", "););}

Formula

a(n) = q*A056240(p-q) where p = A293652(n) and q = A151799^n(p) where A151799^n is A151799(A151799(...)) repeated n times.
a(n) = A295185(A293652(n)).