A321994 Number of different chromatic symmetric functions of hypertrees on n vertices.
1, 1, 2, 4, 9, 22, 59, 165
Offset: 1
Links
- Jeremy L. Martin, The uniqueness problem for chromatic symmetric functions of trees (2015)
- Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111 (1995), 166-194.
- Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998), 267-286.
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; density[c_]:=Total[(Length[#]-1&)/@c]-Length[Union@@c]; hyall[n_]:=Select[stableSets[Select[Subsets[Range[n]],Length[#]>1&],Or[SubsetQ[#1,#2],Length[Intersection[#1,#2]]>1]&],And[Union@@#==Range[n],Length[csm[#]]==1,density[#]==-1]&]; chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]; Table[Length[Union[chromSF/@If[n==1,{{{1}}},hyall[n]]]],{n,5}]
Comments