A322007 a(n) = number of primes of the form p = 2n - q, where q is a prime or semiprime.
0, 0, 1, 2, 3, 3, 4, 4, 6, 5, 6, 7, 8, 8, 9, 7, 8, 9, 11, 9, 11, 11, 11, 12, 13, 12, 13, 14, 13, 13, 16, 15, 16, 16, 14, 16, 18, 16, 19, 19, 17, 18, 21, 17, 19, 22, 19, 19, 24, 19, 21, 23, 20, 21, 26, 22, 23, 28, 23, 24, 29, 23, 24, 29, 21, 25, 29, 24, 25, 29, 27, 25, 33, 26, 27, 32, 27
Offset: 0
Keywords
Examples
a(4) = 2 since for n = 4, 2n = 8 = 2 + 6 = 3 + 5 = 5 + 3, i.e., primes 2, 3 and 5 are of the form specified in the definition (since 6 = 2*3 is a semiprime and 5 and 3 are primes).
References
- Chen, J. R. (1966). "On the representation of a large even integer as the sum of a prime and the product of at most two primes". Kexue Tongbao. 11 (9): 385-386.
- Chen, J. R. (1973). "On the representation of a larger even integer as the sum of a prime and the product of at most two primes". Sci. Sinica. 16: 157-176.
Links
- Y. C. Cai, Chen's Theorem with Small Primes. Acta Mathematica Sinica 18, no. 3 (2002), pp. 597-604. doi:10.1007/s101140200168.
- P. M. Ross, On Chen's theorem that each large even number has the form (p1+p2) or (p1+p2p3), J. London Math. Soc. Series 2 vol. 10, no. 4 (1975), pp. 500-506. doi:10.1112/jlms/s2-10.4.500.
- Tomohiro Yamada, Explicit Chen's theorem, preprint arXiv:1511.03409 [math.NT] (2015).
Programs
-
PARI
A322007(n,s=0)={forprime(p=2,-2+n*=2,bigomega(n-p)<3&&s++);s}
Formula
a(n) = A322006(2n).
Comments