A322006 a(n) = number of primes of the form p = n - q, where q is a prime or semiprime.
0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 4, 4, 4, 6, 5, 5, 4, 6, 5, 7, 4, 8, 5, 8, 5, 9, 4, 7, 4, 8, 7, 9, 4, 11, 5, 9, 6, 11, 6, 11, 6, 11, 8, 12, 4, 13, 6, 12, 8, 13, 6, 14, 5, 13, 8, 13, 4, 16, 5, 15, 9, 16, 7, 16, 6, 14, 9, 16, 5, 18, 6, 16, 10, 19, 7, 19, 6, 17, 10, 18, 4, 21, 9, 17, 9, 19, 8
Offset: 0
Examples
a(4) = 1 is the first nonzero term corresponding to 4 = 2 + 2 or, rather, to the prime 2 = 4 - 2. a(5) = 2 because the primes 2 = 5 - 3 and 3 = 5 - 2 are of the required form n - q where q = 3 resp. q = 2 are primes. a(6) = 2 because the primes 2 = 6 - 4 and 3 = 6 - 3 are of the required form n - q, since q = 4 is a semiprime and q = 3 is a prime.
References
- Chen, J. R. (1966). "On the representation of a large even integer as the sum of a prime and the product of at most two primes". Kexue Tongbao. 11 (9): 385-386.
- Chen, J. R. (1973). "On the representation of a larger even integer as the sum of a prime and the product of at most two primes". Sci. Sinica. 16: 157-176.
Links
- David A. Corneth, Table of n, a(n) for n = 0..10000
- Y. C. Cai, Chen's Theorem with Small Primes, Acta Mathematica Sinica 18, no. 3 (2002), pp. 597-604. doi:10.1007/s101140200168.
- P. M. Ross, On Chen's theorem that each large even number has the form (p1+p2) or (p1+p2p3), J. London Math. Soc. Series 2 vol. 10, no. 4 (1975), pp. 500-506. doi:10.1112/jlms/s2-10.4.500.
- Tomohiro Yamada, Explicit Chen's theorem, preprint arXiv:1511.03409 [math.NT] (2015).
- Veritasium, The Simplest Unsolved Problem in Math, YouTube video (2025).
Programs
-
PARI
A322006(n,s=0)={forprime(p=2,n-2,bigomega(n-p)<3&&s++);s}
Comments