cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322024 Lexicographically earliest such sequence a that a(i) = a(j) => A014197(i) = A014197(j) and A081373(i) = A081373(j), for all i, j. Here A081373(n) gives the number of k, 1 <= k <= n, with phi(k) = phi(n), while A014197(n) gives the number of integers m with phi(m) = n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 7, 14, 3, 15, 3, 10, 7, 16, 3, 17, 3, 18, 7, 10, 3, 19, 3, 10, 7, 20, 3, 21, 3, 22, 10, 14, 3, 23, 7, 24, 3, 16, 3, 16, 7, 25, 7, 14, 3, 26, 3, 7, 10, 27, 3, 17, 3, 10, 3, 28, 3, 29, 3, 24, 10, 30, 7, 31, 3, 15, 3, 16, 3, 32, 3, 10, 3, 33, 3, 34, 7, 2, 10, 7, 10, 35, 3, 24, 24, 21, 3, 28, 3, 2, 10
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A014197(n), A081373(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))}; \\ From A014197
    v081373 = ordinal_transform(vector(up_to,n,eulerphi(n)));
    A081373(n) = v081373[n];
    v322024 = rgs_transform(vector(up_to, n, [A014197(n), A081373(n)]));
    A322024(n) = v322024[n];