A322023 Lexicographically earliest such sequence a that a(i) = a(j) => A081373(i) = A081373(j) and A303756(i) = A303756(j), for all i, j. Here A081373 and A303756 are the ordinal transforms of Euler phi and Carmichael lambda.
1, 2, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 3, 7, 4, 1, 8, 1, 9, 10, 2, 1, 11, 1, 5, 2, 11, 1, 12, 1, 13, 14, 5, 7, 15, 1, 3, 4, 16, 1, 17, 1, 18, 9, 2, 1, 19, 2, 20, 7, 11, 1, 8, 14, 21, 10, 2, 1, 22, 1, 2, 23, 4, 24, 25, 1, 9, 7, 17, 1, 26, 1, 20, 18, 12, 14, 27, 1, 28, 1, 20, 1, 29, 30, 3, 7, 12, 1, 31, 32, 4, 18, 2, 3, 33, 1, 8, 6, 34, 1, 35, 1, 36, 37
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A002322(n) = lcm(znstar(n)[2]); \\ From A002322 v081373 = ordinal_transform(vector(up_to,n,eulerphi(n))); A081373(n) = v081373[n]; v303756 = ordinal_transform(vector(up_to,n,A002322(n))); A303756(n) = v303756[n]; v322023 = rgs_transform(vector(up_to, n, [A081373(n), A303756(n)])); A322023(n) = v322023[n];
Comments