A322027 Maximum order of primeness among the prime factors of n; a(1) = 0.
0, 1, 2, 1, 3, 2, 1, 1, 2, 3, 4, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 4, 1, 2, 3, 1, 2, 1, 1, 3, 5, 1, 4, 2, 3, 2, 1, 1, 2, 3, 2, 2, 1, 4, 3, 1, 1, 2, 1, 3, 2, 1, 1, 2, 4, 1, 2, 1, 3, 3, 1, 5, 2, 1, 3, 4, 2, 2, 2, 3, 1, 2, 1, 1, 3, 1, 4, 2, 1, 3, 2, 2, 2, 2, 3, 1, 2
Offset: 1
Keywords
Examples
a(105) = 3 because the prime factor of 105 = 3*5*7 with maximum order of primeness is 5, with order 3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..65536
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included at A006450 with permission of the author]
Crossrefs
Programs
-
Maple
with(numtheory): p:= proc(n) option remember; `if`(isprime(n), 1+p(pi(n)), 0) end: a:= n-> max(0, map(p, factorset(n))): seq(a(n), n=1..120); # Alois P. Heinz, Nov 24 2018
-
Mathematica
Table[If[n==1,0,Max@@(Length[NestWhileList[PrimePi,PrimePi[#],PrimeQ]]&/@FactorInteger[n][[All,1]])],{n,100}]
Comments