cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322064 Number of ways to choose a stable partition of a simple connected graph with n vertices.

Original entry on oeis.org

1, 1, 1, 7, 141, 6533, 631875, 123430027, 48659732725, 39107797223409, 64702785181953175, 221636039917857648631, 1575528053913118966200441, 23249384407499950496231003021, 711653666389829384034090082068939, 45128328085994437067694854477617868995
Offset: 0

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

A stable partition of a graph is a set partition of the vertices where no non-singleton edge has both ends in the same block.

Examples

			The a(3) = 7 stable partitions. The simple connected graph is on top, and below is a list of all its stable partitions.
  {1,3}{2,3}     {1,2}{2,3}     {1,2}{1,3}     {1,2}{1,3}{2,3}
  --------       --------       --------       --------
  {{1,2},{3}}    {{1,3},{2}}    {{1},{2,3}}    {{1},{2},{3}}
  {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Sum[Length[Select[Subsets[Complement[Subsets[Range[n],{2}],Union@@Subsets/@stn]],And[Union@@#==Range[n],Length[csm[#]]==1]&]],{stn,sps[Range[n]]}],{n,5}]
  • PARI
    \\ See A322278 for M.
    seq(n)={concat([1], (M(n)*vectorv(n,i,1))~)} \\ Andrew Howroyd, Dec 01 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 01 2018