A322089 One of the two successive approximations up to 13^n for 13-adic integer sqrt(-3). Here the 6 (mod 13) case (except for n = 0).
0, 6, 45, 2073, 15255, 300865, 2899916, 22207152, 273201220, 7614777709, 92450772693, 1333177199334, 4917497987408, 191302178967256, 1705677711928521, 48954194340319989, 202511873382592260, 3529594919298491465, 38131258596823843197, 38131258596823843197, 8809653000849500507259
Offset: 0
Examples
6^2 = 36 = 3*13 - 3. 45^2 = 2025 = 12*13^2 - 3. 2073^2 = 4297329 = 1956*13^3 - 3.
Links
- Wikipedia, p-adic number
Programs
-
PARI
a(n) = truncate(sqrt(-3+O(13^n)))
Formula
For n > 0, a(n) = 13^n - A322090(n).
a(n) = Sum_{i=0..n-1} A322091(i)*13^i.
a(n) == L(13^n,6) (mod 13^n) == (3 + sqrt(10))^(13^n) + (3 - sqrt(10))^(13^n) (mod 13^n), where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - Peter Bala, Dec 05 2022
Comments