A322090 One of the two successive approximations up to 13^n for 13-adic integer sqrt(3). Here the 7 (mod 13) case (except for n = 0).
0, 7, 124, 124, 13306, 70428, 1926893, 40541365, 542529501, 2989721664, 45407719156, 458983194703, 18380587135073, 111572927624997, 2231698673770768, 2231698673770768, 462904735800587581, 5120821000082846468, 74324148355133549932, 1423789031778622267480, 10195310774031298931542
Offset: 0
Examples
7^2 = 49 = 4*13 - 3. 124^2 = 15376 = 91*13^2 - 3 = 7*13^3 - 3. 13306^2 = 177049636 = 6199*13^4 - 3.
Links
- Wikipedia, p-adic number
Programs
-
PARI
a(n) = truncate(-sqrt(-3+O(13^n)))
Formula
For n > 0, a(n) = 13^n - A322089(n).
a(n) = Sum_{i=0..n-1} A322092(i)*13^i.
a(n) == L(13^n,7) (mod 13^n) == ((7 + sqrt(53))/2)^(13^n) + ((7 - sqrt(53))/2)^(13^n) (mod 13^n), where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - Peter Bala, Dec 05 2022
Comments