A322110 Number of non-isomorphic connected multiset partitions of weight n that cannot be capped by a tree.
1, 1, 3, 6, 15, 32, 86, 216, 628, 1836, 5822
Offset: 0
Examples
The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8). Non-isomorphic representatives of the a(1) = 1 through a(5) = 32 multiset partitions: {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,1,1,1,1}} {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,1,2,2,2}} {{1},{1}} {{1,2,3}} {{1,2,2,2}} {{1,2,2,2,2}} {{1},{1,1}} {{1,2,3,3}} {{1,2,2,3,3}} {{2},{1,2}} {{1,2,3,4}} {{1,2,3,3,3}} {{1},{1},{1}} {{1},{1,1,1}} {{1,2,3,4,4}} {{1,1},{1,1}} {{1,2,3,4,5}} {{1},{1,2,2}} {{1},{1,1,1,1}} {{1,2},{1,2}} {{1,1},{1,1,1}} {{2},{1,2,2}} {{1},{1,2,2,2}} {{3},{1,2,3}} {{1,2},{1,2,2}} {{1},{1},{1,1}} {{2},{1,1,2,2}} {{1},{2},{1,2}} {{2},{1,2,2,2}} {{2},{2},{1,2}} {{2},{1,2,3,3}} {{1},{1},{1},{1}} {{2,2},{1,2,2}} {{2,3},{1,2,3}} {{3},{1,2,3,3}} {{4},{1,2,3,4}} {{1},{1},{1,1,1}} {{1},{1,1},{1,1}} {{1},{1},{1,2,2}} {{1},{2},{1,2,2}} {{2},{1,2},{1,2}} {{2},{1,2},{2,2}} {{2},{2},{1,2,2}} {{2},{3},{1,2,3}} {{3},{1,3},{2,3}} {{3},{3},{1,2,3}} {{1},{1},{1},{1,1}} {{1},{2},{2},{1,2}} {{2},{2},{2},{1,2}} {{1},{1},{1},{1},{1}}
Links
- Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
Crossrefs
Extensions
Corrected by Gus Wiseman, Jan 27 2021
Comments