cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322117 Number of non-isomorphic blobs (2-connected weak antichains) of multisets of weight n.

Original entry on oeis.org

1, 1, 3, 4, 8, 8, 21, 27, 79, 185, 554
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 21 blobs:
  (1)  (11)    (111)      (1111)        (11111)          (111111)
       (12)    (122)      (1122)        (11222)          (111222)
       (1)(1)  (123)      (1222)        (12222)          (112222)
               (1)(1)(1)  (1233)        (12233)          (112233)
                          (1234)        (12333)          (122222)
                          (11)(11)      (12344)          (122333)
                          (12)(12)      (12345)          (123333)
                          (1)(1)(1)(1)  (1)(1)(1)(1)(1)  (123344)
                                                         (123444)
                                                         (123455)
                                                         (123456)
                                                         (111)(111)
                                                         (112)(122)
                                                         (122)(122)
                                                         (123)(123)
                                                         (123)(233)
                                                         (134)(234)
                                                         (11)(11)(11)
                                                         (12)(12)(12)
                                                         (12)(13)(23)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

A322118 Number of non-isomorphic connected multiset partitions of weight n with no singletons that cannot be capped by a tree.

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 29, 55, 155, 386, 1171
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The density of a multiset partition is defined to be the sum of numbers of distinct elements in each part, minus the number of parts, minus the total number of distinct elements in the whole partition. A multiset partition is a tree if it has more than one part, is connected, and has density -1. A cap is a certain kind of non-transitive coarsening of a multiset partition. For example, the four caps of {{1,1},{1,2},{2,2}} are {{1,1},{1,2},{2,2}}, {{1,1},{1,2,2}}, {{1,1,2},{2,2}}, {{1,1,2,2}}. - Gus Wiseman, Feb 05 2021

Examples

			The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8).
Non-isomorphic representatives of the a(2) = 2 through a(6) = 29 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}    {{1,1,1,1,1,1}}
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}    {{1,1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}    {{1,1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}    {{1,1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}    {{1,2,2,2,2,2}}
                      {{1,1},{1,1}}  {{1,2,3,4,4}}    {{1,2,2,3,3,3}}
                      {{1,2},{1,2}}  {{1,2,3,4,5}}    {{1,2,3,3,3,3}}
                                     {{1,1},{1,1,1}}  {{1,2,3,3,4,4}}
                                     {{1,2},{1,2,2}}  {{1,2,3,4,4,4}}
                                     {{2,2},{1,2,2}}  {{1,2,3,4,5,5}}
                                     {{2,3},{1,2,3}}  {{1,2,3,4,5,6}}
                                                      {{1,1},{1,1,1,1}}
                                                      {{1,1,1},{1,1,1}}
                                                      {{1,1,2},{1,2,2}}
                                                      {{1,2},{1,1,2,2}}
                                                      {{1,2},{1,2,2,2}}
                                                      {{1,2},{1,2,3,3}}
                                                      {{1,2,2},{1,2,2}}
                                                      {{1,2,3},{1,2,3}}
                                                      {{1,2,3},{2,3,3}}
                                                      {{1,3,4},{2,3,4}}
                                                      {{2,2},{1,1,2,2}}
                                                      {{2,2},{1,2,2,2}}
                                                      {{2,3},{1,2,3,3}}
                                                      {{3,3},{1,2,3,3}}
                                                      {{3,4},{1,2,3,4}}
                                                      {{1,1},{1,1},{1,1}}
                                                      {{1,2},{1,2},{1,2}}
                                                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Non-isomorphic tree multiset partitions are counted by A321229, or A321231 without singletons.
The version with singletons is A322110.
The weak-antichain case is counted by A322138, or A322117 with singletons.

Extensions

Definition corrected by Gus Wiseman, Feb 05 2021

A322139 Number of labeled 2-connected simple graphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 0, 1, 3, 18, 131, 1180, 12570, 154535, 2151439, 33431046, 573197723, 10743619285, 218447494812, 4787255999220, 112454930390211, 2818138438707516, 75031660452368001, 2114705500316025737, 62890323682634277951, 1967901134191778583146, 64623905086814216468839
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Formula

a(n) = Sum_{i=3..n} A123534(i, n). - Andrew Howroyd, Nov 30 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018

A322138 Number of non-isomorphic weight-n blobs (2-connected weak antichains) of multisets with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 7, 7, 20, 26, 78, 184, 553
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(7) = 26 blobs:
  {{11}}  {{111}}  {{1111}}    {{11111}}  {{111111}}      {{1111111}}
  {{12}}  {{122}}  {{1122}}    {{11222}}  {{111222}}      {{1112222}}
          {{123}}  {{1222}}    {{12222}}  {{112222}}      {{1122222}}
                   {{1233}}    {{12233}}  {{112233}}      {{1122333}}
                   {{1234}}    {{12333}}  {{122222}}      {{1222222}}
                   {{11}{11}}  {{12344}}  {{122333}}      {{1222333}}
                   {{12}{12}}  {{12345}}  {{123333}}      {{1223333}}
                                          {{123344}}      {{1223344}}
                                          {{123444}}      {{1233333}}
                                          {{123455}}      {{1233444}}
                                          {{123456}}      {{1234444}}
                                          {{111}{111}}    {{1234455}}
                                          {{112}{122}}    {{1234555}}
                                          {{122}{122}}    {{1234566}}
                                          {{123}{123}}    {{1234567}}
                                          {{123}{233}}    {{112}{1222}}
                                          {{134}{234}}    {{122}{1233}}
                                          {{11}{11}{11}}  {{123}{2233}}
                                          {{12}{12}{12}}  {{123}{2333}}
                                          {{12}{13}{23}}  {{123}{2344}}
                                                          {{134}{2344}}
                                                          {{145}{2345}}
                                                          {{223}{1233}}
                                                          {{344}{1234}}
                                                          {{12}{13}{233}}
                                                          {{13}{14}{234}}
		

Crossrefs

A322140 Number of labeled 2-connected multigraphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 1, 2, 7, 37, 262, 2312, 24338, 296928, 4112957, 63692909, 1089526922, 20389411551, 414146189901, 9070116944468, 212983762029683, 5336570227705763, 142083405456873290, 4004953714929148655, 119128974685786590410, 3728639072095285867881
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

We consider a single edge to be 2-connected, so a(1) = 1.

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 1/(1 - y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018
Showing 1-5 of 5 results.